Implementinga
Data Warehous e
with Mlcro oft

S

GQJk

Exam 70-463: Implementing a Data Warehouse
with Microsoft SQL Server 2012

OBJECTIVE CHAPTER LESSON
1. DESIGN AND IMPLEMENT A DATA WAREHOUSE
1.1 Design and implement dimensions. Chapter 1 Lessons 1 and, 2
Chapter 2 Lessons 1,2, and 3
1.2 Design and implement fact tables. Chapter 1 Lesson 3
Chapter 2 Lessons 1, 2, and 3
2. EXTRACT AND TRANSFORM DATA
2.1 Define connection managers. Chapter 3 Lessons 1 and 3
Chapter 4 Lesson 1
Chapter 9 Lesson 2
2.2 Design data flow. Chapter 3 Lesson 1
Chapter 5 Lessons 1, 2, and 3
Chapter 7 Lesson 1
Chapter 10 Lesson 2
Chapter 13 Lesson 2
Chapter 18 Lessons 1,2, and 3
Chapter 19 Lesson 2
Chapter 20 Lesson 1
2.3 Implement data flow. Chapter 3 Lesson 1
Chapter 5 Lessons 1,2, and 3
Chapter 7 Lessons 1 and 3
Chapter 13 Lesson 1 and 2
Chapter 18 Lesson 1
Chapter 20 Lessons 2 and 3
2.4 Manage SSIS package execution. Chapter 8 Lessons 1 and 2
Chapter 12 Lesson 1
2.5 Implement script tasks in SSIS. Chapter 19 Lesson 1
3. LOAD DATA
3.1 Design control flow. Chapter 3 Lessons 2 and 3
Chapter 4 Lessons 2 and 3
Chapter 6 Lessons 1 and 3
Chapter 8 Lessons 1, 2, and 3
Chapter 10 Lesson 1
Chapter 12 Lesson 2
Chapter 19 Lesson 1
3.2 Implement package logic by using SSIS variables and Chapter 6 Lessons 1 and 2
parameters. Chapter 9 Lessons 1 and 2
3.3 Implement control flow. Chapter 4 Lessons 2 and 3
Chapter 6 Lesson 3
Chapter 8 Lessons 1 and 2
Chapter 10 Lesson 3
Chapter 13 Lessons 1, 2, and 3
3.4 Implement data load options. Chapter 7 Lesson 2

3.5 Implement script components in SSIS. Chapter 19 Lesson 2

OBJECTIVE CHAPTER LESSON
4. CONFIGURE AND DEPLOY SSIS SOLUTIONS

4.1 Troubleshoot data integration issues. Chapter 10 Lesson 1
Chapter 13 Lessons 1, 2, and 3
4.2 Install and maintain SSIS components. Chapter 11 Lesson 1
4.3 Implement auditing, logging, and event handling. Chapter 8 Lesson 3
Chapter 10 Lessons 1 and 2
4.4 Deploy SSIS solutions. Chapter 11 Lessons 1 and 2
Chapter 19 Lesson 3
4.5 Configure SSIS security settings. Chapter 12 Lesson 2
5. BUILD DATA QUALITY SOLUTIONS
5.1 Install and maintain Data Quality Services. Chapter 14 Lessons 1,2, and 3
5.2 Implement master data management solutions. Chapter 15 Lessons 1,2, and 3
Chapter 16 Lessons 1, 2, and 3
5.3 Create a data quality project to clean data. Chapter 14 Lesson 1
Chapter 17 Lessons 1,2, and 3
Chapter 20 Lessons 1 and 2

Exam Objectives The exam objectives listed here are current as of this book's publication date. Exam objectives
are subject to change at any time without prior notice and at Microsoft’s sole discretion. Please visit the Microsoft
Learning website for the most current listing of exam objectives: http://www.microsoft.com/learning/en/us
/exam.aspx?ID=70-463&locale=en-us.

B Microsoft

Exam 70-463:
Implementing a Data
Warehouse with
Microsoft: SQL Server
2012

Training Kit

Dejan Sarka
Matija Lah
Grega Jerkic

Published with the authorization of Microsoft Corporation by:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2012 by SolidQuality Europe GmbH

All rights reserved. No part of the contents of this book may be reproduced
or transmitted in any form or by any means without the written permission of
the publisher.

ISBN: 978-0-7356-6609-2
123456789 QG 765432
Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors
worldwide. If you need support related to this book, email Microsoft Press
Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/
en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respec-
tive owners.

The example companies, organizations, products, domain names, email ad-
dresses, logos, people, places, and events depicted herein are fictitious. No
association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author's views and opinions. The information con-
tained in this book is provided without any express, statutory, or implied
warranties. Neither the authors, O'Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or
alleged to be caused either directly or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones
Production Editor: Holly Bauer

Editorial Production: Online Training Solutions, Inc.
Technical Reviewer: Milos Radivojevi¢

Copyeditor: Kathy Krause, Online Training Solutions, Inc.
Indexer: Ginny Munroe, Judith McConville

Cover Design: Twist Creative « Seattle

Cover Composition: Zyg Group, LLC

lllustrator: Jeanne Craver, Online Training Solutions, Inc.

Contents at a Glance

Introduction XXVii
CHAPTER 1 Data Warehouse Logical Design 3
CHAPTER 2 Implementing a Data Warehouse 41
CHAPTER 3 Creating SSIS Packages 87
CHAPTER 4 Designing and Implementing Control Flow 131
CHAPTER 5 Designing and Implementing Data Flow 177
CHAPTER 6 Enhancing Control Flow 239
CHAPTER 7 Enhancing Data Flow 283
CHAPTER 8 Creating a Robust and Restartable Package 327
CHAPTER 9 Implementing Dynamic Packages 353
CHAPTER10 Auditing and Logging 381
CHAPTER 11 Installing SSIS and Deploying Packages 421
CHAPTER 12 Executing and Securing Packages 455
CHAPTER13 Troubleshooting and Performance Tuning 497
CHAPTER 14 Installing and Maintaining Data Quality Services 529
CHAPTER 15 Implementing Master Data Services 565
CHAPTER16 Managing Master Data 605
CHAPTER 17 Creating a Data Quality Project to Clean Data 637

PART VI

ADVANCED SSIS AND DATA QUALITY TOPICS

CHAPTER 18
CHAPTER 19
CHAPTER 20

SSIS and Data Mining
Implementing Custom Code in SSIS Packages

Identity Mapping and De-Duplicating

Index

667
699
735

769

Contents

Introduction XXVii
System Requirements XXVili
Using the Companion CD XXiX
Acknowledgments XXXI
Support & Feedback XXXI
Preparing for the Exam XXX
Chapter 1 Data Warehouse Logical Design 3
Before You Begin. 4
Lesson 1: Introducing Star and Snowflake Schemas.................... 4
Reporting Problems with a Normalized Schema
Star Schema
Snowflake Schema
Granularity Level 12
Auditing and Lineage 13
Lesson Summary 16
Lesson Review 16
Lesson 2: Designing DIMeNSIONSttt 17
Dimension Column Types 17
Hierarchies 19
Slowly Changing Dimensions 21
Lesson Summary 26
Lesson Review 26

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our

books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii

Chapter 2

Lesson 3: Designing Fact Tables

Case Scenarios

Suggested Practices

Answers

Before You Begin

Lesson 1: Implementing Dimensions and Fact Tables

Lesson 2: Managing the Performance of a Data Warehouse

Fact Table Column Types
Additivity of Measures
Additivity of Measures in SSAS
Many-to-Many Relationships
Lesson Summary

Lesson Review

Case Scenario 1: A Quick POC Project
Case Scenario 2: Extending the POC Project

Analyze the AdventureWorksDW2012 Database Thoroughly

Check the SCD and Lineage in the AdventureWorks-
DW2012 Database

Lesson 1
Lesson 2
Lesson 3
Case Scenario 1

Case Scenario 2

Implementing a Data Warehouse

Creating a Data Warehouse Database
Implementing Dimensions
Implementing Fact Tables

Lesson Summary

Lesson Review

Indexing Dimensions and Fact Tables
Indexed Views
Data Compression

Columnstore Indexes and Batch Processing

28
29
30
30
33
34

...34

34
35

...35

35

36

...37

37
37
38
39
39

Lesson Summary 69

Lesson Review 70
Lesson 3: Loading and Auditing Loadsl 70
Using Partitions 71

Data Lineage 73
Lesson Summary 78
Lesson Review 78

Case SCENANIOS. . oottt ettt 78
Case Scenario 1: Slow DW Reports 79

Case Scenario 2: DW Administration Problems 79
Suggested Practicest 79
Test Different Indexing Methods 79

Test Table Partitioning 80

AW TS, o e 81
Lesson 1 81
Lesson 2 81
Lesson 3 82

Case Scenario 1 83

Case Scenario 2 83
Chapter 3 Creating SSIS Packages 87
Before You Begin. 89
Lesson 1: Using the SQL Server Import and Export Wizard 89
Planning a Simple Data Movement 89
Lesson Summary 99
Lesson Review 99
Lesson 2: Developing SSIS Packages in SSDT............ ...t 101
Introducing SSDT 102
Lesson Summary 107
Lesson Review 108

Lesson 3: Introducing Control Flow, Data Flow, and
Connection Managersu e 109

Introducing SSIS Development 110

Introducing SSIS Project Deployment 110
Lesson Summary 124
Lesson Review 124
CaSe SCENAIIOS. « o ettt ettt e e 125
Case Scenario 1: Copying Production Data to Development 125
Case Scenario 2: Connection Manager Parameterization 125
Suggested Practicest 125
Use the Right Tool 125
Account for the Differences Between Development and
Production Environments 126
ANSWTS. ot 127
Lesson 1 127
Lesson 2 128
Lesson 3 128
Case Scenario 1 129
Case Scenario 2 129
Chapter 4 Designing and Implementing Control Flow 131
Before You Begin. 132
Lesson 1: Connection Managers ..., 133
Lesson Summary 144
Lesson Review 144
Lesson 2: Control Flow Tasks and Containers 145
Planning a Complex Data Movement 145
Tasks 147
Containers 155
Lesson Summary 163
Lesson Review 163
Lesson 3: Precedence Constraints ..o, 164
Lesson Summary 169

Lesson Review 169

CaSe SCENAMIOS . . v vt ettt et e e e 170

Case Scenario 1: Creating a Cleanup Process 170

Case Scenario 2: Integrating External Processes 171
Suggested Practices 171
A Complete Data Movement Solution 171
ANSWETS. . oot 173
Lesson 1 173
Lesson 2 174
Lesson 3 175

Case Scenario 1 176

Case Scenario 2 176
Chapter 5 Designing and Implementing Data Flow 177
Before You Begin. 177
Lesson 1: Defining Data Sources and Destinations. 178
Creating a Data Flow Task 178
Defining Data Flow Source Adapters 180
Defining Data Flow Destination Adapters 184

SSIS Data Types 187
Lesson Summary 197
Lesson Review 197
Lesson 2: Working with Data Flow Transformations.................. 198
Selecting Transformations 198
Using Transformations 205
Lesson Summary 215
Lesson Review 215
Lesson 3: Determining Appropriate ETL Strategy and Tools........... 216
ETL Strategy 217
Lookup Transformations 218
Sorting the Data 224
Set-Based Updates 225
Lesson Summary 231

Lesson Review 231

xii

Case SCENAMO. . .ottt 232
Case Scenario: New Source System 232
Suggested Practicest 233
Create and Load Additional Tables 233
ANSWETS. . ettt 234
Lesson 1 234
Lesson 2 234
Lesson 3 235
Case Scenario 236
Chapter 6 Enhancing Control Flow 239
Before You Begin. 241
Lesson 1: SSIS Variableso i i 241
System and User Variables 243
Variable Data Types 245
Variable Scope 248
Property Parameterization 251
Lesson Summary 253
Lesson Review 253
Lesson 2: Connection Managers, Tasks, and Precedence
Constraint EXpressions 254
Expressions 255
Property Expressions 259
Precedence Constraint Expressions 259
Lesson Summary 263
Lesson Review 264
Lesson 3: Using a Master Package for Advanced Control Flow 265
Separating Workloads, Purposes, and Objectives 267
Harmonizing Workflow and Configuration 268
The Execute Package Task 269
The Execute SQL Server Agent Job Task 269
The Execute Process Task 270

Lesson Summary 275

Lesson Review 275

CaSE SCENAIIOS. « o vttt et 276
Case Scenario 1: Complete Solutions 276

Case Scenario 2: Data-Driven Execution 277
Suggested Practicesttt 277
Consider Using a Master Package 277

AW TS, oot 278
Lesson 1 278
Lesson 2 279
Lesson 3 279

Case Scenario 1 280

Case Scenario 2 281
Chapter 7 Enhancing Data Flow 283
Before You Begin. 283
Lesson 1: Slowly Changing Dimensions 284
Defining Attribute Types 284
Inferred Dimension Members 285
Using the Slowly Changing Dimension Task 285
Effectively Updating Dimensions 290
Lesson Summary 298
Lesson Review 298
Lesson 2: Preparing a Package for Incremental Load. 299
Using Dynamic SQL to Read Data 299
Implementing CDC by Using SSIS 304

ETL Strategy for Incrementally Loading Fact Tables 307
Lesson Summary 316
Lesson Review 316
Lesson 3:Error Flow 317
Using Error Flows 317
Lesson Summary 321
Lesson Review 321

xiii

xiv

Chapter 8

Case SCENANMIO. .. v ittt e

Case Scenario: Loading Large Dimension and Fact Tables

Suggested Practicesttt

Load Additional Dimensions

AN SW LS. L e

Lesson 1
Lesson 2
Lesson 3

Case Scenario

Creating a Robust and Restartable Package

Before YouBegin........ ...

Lesson 1: Package Transactionscoouiieeiinnnn.

Defining Package and Task Transaction Settings
Transaction Isolation Levels

Manually Handling Transactions

Lesson Summary

Lesson Review

Lesson 2: Checkpoints

Implementing Restartability Checkpoints
Lesson Summary

Lesson Review

Lesson 3:EventHandlers..........

Using Event Handlers
Lesson Summary

Lesson Review

Case SCENANIO. . ..ottt e

Case Scenario: Auditing and Notifications in SSIS Packages

Suggested Practicesot

Use Transactions and Event Handlers

AN SW LS. . .ot

Lesson 1
Lesson 2

322

....322

322

....323

323
324
324
325

Lesson 3 350
Case Scenario 351
Chapter 9 Implementing Dynamic Packages 353
Before You Begin.o 354
Lesson 1: Package-Level and Project-Level Connection
Managers and Parameters. i 354
Using Project-Level Connection Managers 355
Parameters 356
Build Configurations in SQL Server 2012 Integration Services ~ 358
Property Expressions 361
Lesson Summary 366
Lesson Review 366
Lesson 2: Package Configurationso, 367
Implementing Package Configurations 368
Lesson Summary 377
Lesson Review 377
Case SCENAMIO. . ..ot 378
Case Scenario: Making SSIS Packages Dynamic 378
Suggested Practices 378
Use a Parameter to Incrementally Load a Fact Table 378
ANSWETS. et 379
Lesson 1 379
Lesson 2 379
Case Scenario 380
Chapter 10 Auditing and Logging 381
Before You Begin. 383
Lesson 1: Logging Packagescooiiiiiiinin ... 383
Log Providers 383
Configuring Logging 386
Lesson Summary 393
Lesson Review 394

Xv

xvi

Lesson 2: Implementing Auditing and Lineage...................... 394
Auditing Techniques 395
Correlating Audit Data with SSIS Logs 401
Retention 401
Lesson Summary 405
Lesson Review 405

Lesson 3: Preparing Package Templates............... 406
SSIS Package Templates 407
Lesson Summary 410
Lesson Review 410

Case SCENAMIOS. . ettt 411
Case Scenario 1: Implementing SSIS Logging at Multiple
Levels of the SSIS Object Hierarchy 411
Case Scenario 2: Implementing SSIS Auditing at
Different Levels of the SSIS Object Hierarchy 412

Suggested Practicesoo e 412
Add Auditing to an Update Operation in an Existing
Execute SQL Task 412
Create an SSIS Package Template in Your Own Environment 413

ANSWETS. L 414
Lesson 1 414
Lesson 2 415
Lesson 3 416
Case Scenario 1 417
Case Scenario 2 417

Chapter 11 Installing SSIS and Deploying Packages 421

Before You Begin. 422

Lesson 1: Installing SSIS Components. ..., 423
Preparing an SSIS Installation 424
Installing SSIS 428
Lesson Summary 436
Lesson Review 436

Lesson 2: Deploying SSISPackages ..o, 437
SSISDB Catalog 438
SSISDB Objects 440
Project Deployment 442
Lesson Summary 449
Lesson Review 450

Case SCENANIOS. . ottt 450
Case Scenario 1: Using Strictly Structured Deployments 451
Case Scenario 2: Installing an SSIS Server 451

Suggested Practicest 451
Upgrade Existing SSIS Solutions 451

AW TS, oo 452
Lesson 1 452
Lesson 2 453
Case Scenario 1 454
Case Scenario 2 454

Chapter 12 Executing and Securing Packages 455

Before YouBegin. 456

Lesson 1: Executing SSIS Packages. i 456
On-Demand SSIS Execution 457
Automated SSIS Execution 462
Monitoring SSIS Execution 465
Lesson Summary 479
Lesson Review 479

Lesson 2: Securing SSIS Packages. 480
SSISDB Security 481
Lesson Summary 490
Lesson Review 490

CaSe SCENAIIOS . . . oottt 491
Case Scenario 1: Deploying SSIS Packages to Multiple
Environments 491
Case Scenario 2: Remote Executions 491

xvii

Suggested Practicesttt

Improve the Reusability of an SSIS Solution

AN SWTS. L ot e

Lesson 1
Lesson 2
Case Scenario 1

Case Scenario 2

Chapter 13 Troubleshooting and Performance Tuning

Before YouBegin.ot

Lesson 1: Troubleshooting Package Execution

Design-Time Troubleshooting
Production-Time Troubleshooting
Lesson Summary

Lesson Review

Lesson 2: Performance Tuningcovviiiinnnn....

SSIS Data Flow Engine

Data Flow Tuning Options

Parallel Execution in SSIS

Troubleshooting and Benchmarking Performance
Lesson Summary

Lesson Review

Case SCENANIO. ..\ vttt e e

Case Scenario: Tuning an SSIS Package

Suggested Practice. ...t

Get Familiar with SSISDB Catalog Views

AN SW LS. L .ottt

Lesson 1
Lesson 2

Case Scenario

xviii

492

....... 493

493
494
495
495

Chapter 14 Installing and Maintaining Data Quality Services 529

Before You Begin. 530
Lesson 1: Data Quality Problemsand Roles......................... 530
Data Quality Dimensions 531
Data Quality Activities and Roles 535
Lesson Summary 539
Lesson Review 539
Lesson 2: Installing Data Quality Services. 540
DQS Architecture 540
DQS Installation 542
Lesson Summary 548
Lesson Review 548
Lesson 3: Maintaining and Securing Data Quality Services............ 549
Performing Administrative Activities with Data Quality Client 549
Performing Administrative Activities with Other Tools 553
Lesson Summary 558
Lesson Review 558
Case SCENANIO. . ..ttt 559
Case Scenario: Data Warehouse Not Used 559
Suggested Practices 560
Analyze the AdventureWorksDW2012 Database 560
Review Data Profiling Tools 560
ANSWETS. L 561
Lesson 1 561
Lesson 2 561
Lesson 3 562
Case Scenario 563

Xix

XX

Chapter 15 Implementing Master Data Services
Before YouBegin........ ...

Lesson 1: DefiningMasterData.................ccovvnn...

What Is Master Data?
Master Data Management
MDM Challenges

Lesson Summary

Lesson Review

Lesson 2: Installing Master Data Services...................

Master Data Services Architecture
MDS Installation
Lesson Summary

Lesson Review

Lesson 3: Creating a Master Data Services Model

MDS Models and Objects in Models
MDS Objects
Lesson Summary

Lesson Review

Case SCENAMOS . . vttt e

Case Scenario 1: Introducing an MDM Solution

Case Scenario 2: Extending the POC Project

Suggested Practicesottt

Analyze the AdventureWorks2012 Database
Expand the MDS Model

ANSWTS. L

Lesson 1
Lesson 2
Lesson 3
Case Scenario 1

Case Scenario 2

Chapter 16 Managing Master Data 605

Before You Begin. 605
Lesson 1: Importing and Exporting MasterData 606
Creating and Deploying MDS Packages 606
Importing Batches of Data 607
Exporting Data 609
Lesson Summary 615
Lesson Review 616
Lesson 2: Defining Master Data Security 616
Users and Permissions 617
Overlapping Permissions 619
Lesson Summary 624
Lesson Review 624
Lesson 3: Using Master Data Services Add-in for Excel 624
Editing MDS Data in Excel 625
Creating MDS Objects in Excel 627
Lesson Summary 632
Lesson Review 632
Case SCENAMIO. . ..ot 633
Case Scenario: Editing Batches of MDS Data 633
Suggested Practices 633
Analyze the Staging Tables 633
Test Security 633
ANSWETS. . ot 634
Lesson 1 634
Lesson 2 635
Lesson 3 635
Case Scenario 636

xxi

Chapter 17 Creating a Data Quality Project to Clean Data 637

Before YouBegin.o 637
Lesson 1: Creating and Maintaining a Knowledge Base 638
Building a DQS Knowledge Base 638
Domain Management 639
Lesson Summary 645
Lesson Review 645
Lesson 2: Creating a Data Quality Project 646
DQS Projects 646

Data Cleansing 647
Lesson Summary 653
Lesson Review 653
Lesson 3: Profiling Data and Improving Data Quality 654
Using Queries to Profile Data 654

SSIS Data Profiling Task 656
Lesson Summary 659
Lesson Review 660

CaSse SCENAMIO. « o vttt et 660
Case Scenario: Improving Data Quality 660
Suggested Practicesoo e 661
Create an Additional Knowledge Base and Project 661
ANSWTS. 662
Lesson 1 662
Lesson 2 662
Lesson 3 663

Case Scenario 664
Chapter 18 SSIS and Data Mining 667
Before You Begin. 667
Lesson 1: Data Mining Task and Transformation..................... 668
What Is Data Mining? 668

SSAS Data Mining Algorithms 670

xxii

Using Data Mining Predictions in SSIS 671
Lesson Summary 679
Lesson Review 679
Lesson 2: Text MiNINg. . ..o 679
Term Extraction 680

Term Lookup 681
Lesson Summary 686
Lesson Review 686
Lesson 3: Preparing Data for DataMining.......................... 687
Preparing the Data 688

SSIS Sampling 689
Lesson Summary 693
Lesson Review 693

CaSse SCENAIIO. . oottt 694
Case Scenario: Preparing Data for Data Mining 694
Suggested Practicest 694
Test the Row Sampling and Conditional Split Transformations 694
ANSWETS. L o 695
Lesson 1 695
Lesson 2 695
Lesson 3 696

Case Scenario 697
Chapter 19 Implementing Custom Code in SSIS Packages 699
Before YouBegin. 700
Lesson L:Script Task.t 700
Configuring the Script Task 701
Coding the Script Task 702
Lesson Summary 707
Lesson Review 707
Lesson 2: Script COmMPONENt 707
Configuring the Script Component 708
Coding the Script Component 709

xxiii

xxiv

Lesson Summary 715
Lesson Review 715
Lesson 3: Implementing Custom Components 716
Planning a Custom Component 717
Developing a Custom Component 718
Design Time and Run Time 719
Design-Time Methods 719
Run-Time Methods 721
Lesson Summary 730
Lesson Review 730

Case SCENAMIO. . oottt 731
Case Scenario: Data Cleansing 731
Suggested Practicest 731
Create a Web Service Source 731
ANSWETS. o 732
Lesson 1 732
Lesson 2 732
Lesson 3 733

Case Scenario 734
Chapter 20 Identity Mapping and De-Duplicating 735
Before YouBegin. 736
Lesson 1: Understanding the Problem 736
Identity Mapping and De-Duplicating Problems 736
Solving the Problems 738
Lesson Summary 744
Lesson Review 744
Lesson 2: Using DQS and the DQS Cleansing Transformation 745
DQS Cleansing Transformation 746

DQS Matching 746
Lesson Summary 755
Lesson Review 755

Lesson 3: Implementing SSIS Fuzzy Transformations................. 756

Fuzzy Transformations Algorithm 756
Versions of Fuzzy Transformations 758
Lesson Summary 764
Lesson Review 764
Case SCENAIIO. . oottt 765
Case Scenario: Improving Data Quality 765
Suggested Practices 765
Research More on Matching 765
ANSWETS. ettt 766
Lesson 1 766
Lesson 2 766
Lesson 3 767
Case Scenario 768
Index 769

Contents XXV

Introduction

his Training Kit is designed for information technology (IT) professionals who support

or plan to support data warehouses, extract-transform-load (ETL) processes, data qual-
ity improvements, and master data management. It is designed for IT professionals who also
plan to take the Microsoft Certified Technology Specialist (MCTS) exam 70-463. The authors
assume that you have a solid, foundation-level understanding of Microsoft SQL Server 2012
and the Transact-SQL language, and that you understand basic relational modeling concepts.

The material covered in this Training Kit and on Exam 70-463 relates to the technologies
provided by SQL Server 2012 for implementing and maintaining a data warehouse. The topics
in this Training Kit cover what you need to know for the exam as described on the Skills Mea-
sured tab for the exam, available at:

http.//www.microsoft.com/learning/en/us/exam.aspx?id=70-463

By studying this Training Kit, you will see how to perform the following tasks:
m Design an appropriate data model for a data warehouse
m Optimize the physical design of a data warehouse

m Extract data from different data sources, transform and cleanse the data, and load
it in your data warehouse by using SQL Server Integration Services (SSIS)

m Use advanced SSIS components
m Use SQL Server 2012 Master Data Services (MDS) to take control of your master data
m Use SQL Server Data Quality Services (DQS) for data cleansing

Refer to the objective mapping page in the front of this book to see where in the book
each exam objective is covered.

System Requirements

The following are the minimum system requirements for the computer you will be using to
complete the practice exercises in this book and to run the companion CD.

SQL Server and Other Software Requirements
This section contains the minimum SQL Server and other software requirements you will need:

m SQL Server 2012 You need access to a SQL Server 2012 instance with a logon that
has permissions to create new databases—preferably one that is a member of the sys-
admin role. For the purposes of this Training Kit, you can use almost any edition of

XXVii

on-premises SQL Server (Standard, Enterprise, Business Intelligence, and Developer),
both 32-bit and 64-bit editions. If you don't have access to an existing SQL Server
instance, you can install a trial copy of SQL Server 2012 that you can use for 180 days.
You can download a trial copy here:
http://www.microsoft.com/sqlserver/en/us/get-sql-server/try-it.aspx

m SQL Server 2012 Setup Feature Selection When you are in the Feature Selection
dialog box of the SQL Server 2012 setup program, choose at minimum the following
components:

m Database Engine Services

m Documentation Components
= Management Tools - Basic

®m Management Tools — Complete
m SQL Server Data Tools

= Windows Software Development Kit (SDK) or Microsoft Visual Studio 2010 The
Windows SDK provides tools, compilers, headers, libraries, code samples, and a new
help system that you can use to create applications that run on Windows. You need
the Windows SDK for Chapter 19, “Implementing Custom Code in SSIS Packages” only.
If you already have Visual Studio 2010, you do not need the Windows SDK. If you need
the Windows SDK, you need to download the appropriate version for your operat-
ing system. For Windows 7, Windows Server 2003 R2 Standard Edition (32-bit x86),
Windows Server 2003 R2 Standard x64 Edition, Windows Server 2008, Windows Server
2008 R2, Windows Vista, or Windows XP Service Pack 3, use the Microsoft Windows
SDK for Windows 7 and the Microsoft .NET Framework 4 from:

http.//www.microsoft.com/en-us/download/details.aspx?id=8279

Hardware and Operating System Requirements

You can find the minimum hardware and operating system requirements for SQL Server 2012
here:

http://msdn.microsoft.com/en-us/library/ms143506(v=sql.110).aspx

Data Requirements

The minimum data requirements for the exercises in this Training Kit are the following:
® The AdventureWorks OLTP and DW databases for SQL Server 2012 Exercises in

this book use the AdventureWorks online transactional processing (OLTP) database,
which supports standard online transaction processing scenarios for a fictitious bicycle

xxviii Introduction

manufacturer (Adventure Works Cycles), and the AdventureWorks data warehouse (DW)
database, which demonstrates how to build a data warehouse. You need to download
both databases for SQL Server 2012. You can download both databases from:

http://msftdbprodsamples.codeplex.com/releases/view/55330

You can also download the compressed file containing the data (mdf) files for both
databases from O'Reilly’s website here:

http.//go.microsoft.com/FWLink/?Linkid=260986

Using the Companion CD

A companion CD is included with this Training Kit. The companion CD contains the following:

m Practice tests You can reinforce your understanding of the topics covered in this
Training Kit by using electronic practice tests that you customize to meet your needs.
You can practice for the 70-463 certification exam by using tests created from a pool
of over 200 realistic exam questions, which give you many practice exams to ensure
that you are prepared.

= An eBook An electronic version (eBook) of this book is included for when you do not
want to carry the printed book with you.

m Source code A compressed file called TK70463_CodelabSolutions.zip includes the
Training Kit's demo source code and exercise solutions. You can also download the
compressed file from O'Reilly’s website here:

http.//go.microsoft.com/FWLink/?Linkid=260986

For convenient access to the source code, create a local folder called C:\TK463\ and
extract the compressed archive by using this folder as the destination for the extracted
files.

m Sample data A compressed file called AdventureWorksDataFiles.zip includes the
Training Kit's demo source code and exercise solutions. You can also download the
compressed file from O'Reilly’s website here:

http://go.microsoft.com/FWLink/?Linkid=260986
For convenient access to the source code, create a local folder called C:\TK463\ and
extract the compressed archive by using this folder as the destination for the extracted

files. Then use SQL Server Management Studio (SSMS) to attach both databases and
create the log files for them.

Introduction xxix

How to Install the Practice Tests
To install the practice test software from the companion CD to your hard disk, perform the

following steps:

1. Insert the companion CD into your CD drive and accept the license agreement. A CD
menu appears.

NOTE |IF THE CD MENU DOES NOT APPEAR

If the CD menu or the license agreement does not appear, AutoRun might be disabled
on your computer. Refer to the Readme.txt file on the CD for alternate installation
instructions.

2. Click Practice Tests and follow the instructions on the screen.

How to Use the Practice Tests

To start the practice test software, follow these steps:

1. Click Start | All Programs, and then select Microsoft Press Training Kit Exam Prep.
A window appears that shows all the Microsoft Press Training Kit exam prep suites
installed on your computer.

2. Double-click the practice test you want to use.

When you start a practice test, you choose whether to take the test in Certification Mode,
Study Mode, or Custom Mode:

m Certification Mode Closely resembles the experience of taking a certification exam.
The test has a set number of questions. It is timed, and you cannot pause and restart
the timer.

m Study Mode Creates an untimed test during which you can review the correct an-
swers and the explanations after you answer each question.

m Custom Mode Gives you full control over the test options so that you can customize
them as you like.

In all modes, when you are taking the test, the user interface is basically the same but with
different options enabled or disabled depending on the mode.

When you review your answer to an individual practice test question, a “References” sec-
tion is provided that lists where in the Training Kit you can find the information that relates to
that question and provides links to other sources of information. After you click Test Results

xxx Introduction

to score your entire practice test, you can click the Learning Plan tab to see a list of references
for every objective.

How to Uninstall the Practice Tests

To uninstall the practice test software for a Training Kit, use the Program And Features option
in Windows Control Panel.

Acknowledgments

A book is put together by many more people than the authors whose names are listed on

the title page. We'd like to express our gratitude to the following people for all the work they
have done in getting this book into your hands: Milos Radivojevi¢ (technical editor) and Fritz
Lechnitz (project manager) from SolidQ, Russell Jones (acquisitions and developmental editor)
and Holly Bauer (production editor) from O'Reilly, and Kathy Krause (copyeditor) and Jaime
Odell (proofreader) from OTSI. In addition, we would like to give thanks to Matt Masson
(member of the SSIS team), Wee Hyong Tok (SSIS team program manager), and Elad Ziklik
(DQS group program manager) from Microsoft for the technical support and for unveiling the
secrets of the new SQL Server 2012 products. There are many more people involved in writing
and editing practice test questions, editing graphics, and performing other activities; we are
grateful to all of them as well.

Support & Feedback

The following sections provide information on errata, book support, feedback, and contact
information.

Errata

We've made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=260985

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at:

mspinput@microsoft.com

Introduction xxxi

Please note that product support for Microsoft software is not offered through the ad-
dresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http.//www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in ad-
vance for your input!

Stay in Touch

Let's keep the conversation going! We are on Twitter: http://twitter.com/MicrosoftPress.

Preparing for the Exam

icrosoft certification exams are a great way to build your resume and let the world know

about your level of expertise. Certification exams validate your on-the-job experience
and product knowledge. While there is no substitution for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. We recommend
that you round out your exam preparation plan by using a combination of available study
materials and courses. For example, you might use the training kit and another study guide
for your “at home" preparation, and take a Microsoft Official Curriculum course for the class-
room experience. Choose the combination that you think works best for you.

Note that this training kit is based on publicly available information about the exam and the
authors’ experience. To safeguard the integrity of the exam, authors do not have access to the
live exam.

xxxii Introduction

Designing and
mplementing a
Data Warehouse

CHAPTER1 Data Warehouse Logical Design 3

CHAPTER2 Implementing a Data Warehouse 41

Data Warehouse Logical
Design
Exam objectives in this chapter:

m Design and implement dimensions.

m Design and implement fact tables.

nalyzing data from databases that support line-of-business

(LOB) applications is usually not an easy task. The normal- IMPORTANT
ized relational schema used for an LOB application can consist Have you read
of thousands of tables. Naming conventions are frequently not page xxxii?
enforced. Therefore, it is hard to discover where the data you It contains valuable
need for a report is stored. Enterprises frequently have multiple information regarding
LOB applications, often working against more than one data- the skills you need to

base. For the purposes of analysis, these enterprises need to be pass the exam.

able to merge the data from multiple databases. Data quality is
a common problem as well. In addition, many LOB applications
do not track data over time, though many analyses depend on historical data.

A common solution to these problems is to create a data warehouse (DW). A DW is a
centralized data silo for an enterprise that contains merged, cleansed, and historical data.
DW schemas are simplified and thus more suitable for generating reports than normal-
ized relational schemas. For a DW, you typically use a special type of logical design called a
Star schema, or a variant of the Star schema called a Snowflake schema. Tables in a Star or
Snowflake schema are divided into dimension tables (commonly known as dimensions) and
fact tables.

Data in a DW usually comes from LOB databases, but it's a transformed and cleansed
copy of source data. Of course, there is some latency between the moment when data ap-
pears in an LOB database and the moment when it appears in a DW. One common method
of addressing this latency involves refreshing the data in a DW as a nightly job. You use the
refreshed data primarily for reports; therefore, the data is mostly read and rarely updated.

Queries often involve reading huge amounts of data and require large scans. To support such
queries, it is imperative to use an appropriate physical design for a DW.

DW logical design seems to be simple at first glance. It is definitely much simpler than a
normalized relational design. However, despite the simplicity, you can still encounter some
advanced problems. In this chapter, you will learn how to design a DW and how to solve some
of the common advanced design problems. You will explore Star and Snowflake schemas, di-
mensions, and fact tables. You will also learn how to track the source and time for data coming
into a DW through auditing—or, in DW terminology, lineage information.

Lessons in this chapter:
m Lesson 1: Introducing Star and Snowflake Schemas
m Lesson 2: Designing Dimensions

m Lesson 3: Designing Fact Tables

Before You Begin

To complete this chapter, you must have:
®m An understanding of normalized relational schemas.
m Experience working with Microsoft SQL Server 2012 Management Studio.
m A working knowledge of the Transact-SQL language.
m The AdventureWorks2012 and AdventureWorksDW2012 sample databases installed.

Lesson 1: Introducing Star and Snowflake Schemas

Before you design a data warehouse, you need to understand some common design patterns
used for a DW, namely the Star and Snowflake schemas. These schemas evolved in the 1980s.
In particular, the Star schema is currently so widely used that it has become a kind of informal
standard for all types of business intelligence (BI) applications.

After this lesson, you will be able to:
m Understand why a normalized schema causes reporting problems.
m Understand the Star schema.
m Understand the Snowflake schema.

m Determine granularity and auditing needs.

Estimated lesson time: 40 minutes

Data Warehouse Logical Design

Reporting Problems with a Normalized Schema

This lesson starts with normalized relational schema. Let's assume that you have to create a
business report from a relational schema in the AdventureWorks2012 sample database. The
report should include the sales amount for Internet sales in different countries over multiple

years. The task (or even challenge) is to find out which tables and columns you would need to
create the report. You start by investigating which tables store the data you need, as shown in
Figure 1-1, which was created with the diagramming utility in SQL Server Management Studio
(SSMS).

SalesOrderHeader (Sales) *

ﬂ SalesOrderil
_I Revisionfumber
_I OrderDate
_I DueDate

| shipDate

J Status

J OnlineCrderFlag
J SalesOrdertumber

_I Accounthumber

_I PurchaseOrderhumber

-

ﬂ Customet 1D
_I FersonID
| stere0
_I TerritoryID

_I Accounturmber

J rowguid

| ModifiedDate
2|

lnoe=cn| Customer (Sales)

| o

|»

g

@

StateProvince (Pers¢
ﬂ StateProvincelD A
_I StateProvinceCode

_I CountryRegionCode

_I IsOnlyStateProvinceFla

_I Hame

J TerritoryIDr —
J. roviguid =
| | »

!

CountryRegion (Per
j CountryRegionCode :I

—
J Hamne _ILI
»

[T
4l |

_I CustormerID
| salespersonio Person (Pe'_'SO”) Address (Person) * AddressType (Per
| merrionymo] BusinessEntityID = ﬂ addressID a ﬁ aAddressTypelD
| simoaddresso _| Persantype | AddressLinet | hame
I| ShipToAddressID | _lﬂ __| mamestyte | Addresslinez | rowauid
A Ld i
Title _ N] modfisdbate

_I Firsthame _I StateProvincelD

_I Middizhame PostalCode -

_I LastMamne: A | »

| =ik _I_'I
SalesOrderDetail (Sales 1| | >
ﬂ SalesOrderID _AI %

jl SalesOrderDetaillD J %
_I CarrierTrackingMumber BusinessEntity (Pers

| orceraty 7| Businessentiyn
—

I ProductID i rovwguid
1| | » —! %
4| | »

FIGURE 1-1 A diagram of tables you would need for a simple sales report.

BusinessEntityAddress (Person)
ﬂ BusinessEntityID
_%‘I AddressID

_%‘I AddressTypell

1 L
2l |

|LI<_I_I»_

Even for this relatively simple report, you would end up with 10 tables. You need the sales
tables and the tables containing information about customers. The AdventureWorks2012
database schema is highly normalized; it's intended as an example schema to support LOB
applications. Although such a schema works extremely well for LOB applications, it can cause
problems when used as the source for reports, as you'll see in the rest of this section.

Normalization is a process in which you define entities in such a way that a single table
represents exactly one entity. The goal is to have a complete and non-redundant schema.
Every piece of information must be stored exactly once. This way, you can enforce data integ-
rity. You have a place for every piece of data, and because each data item is stored only once,
you do not have consistency problems. However, after a proper normalization, you typically
wind up with many tables. In a database that supports an LOB application for an enterprise,
you might finish with thousands of tables!

Lesson 1: Introducing Star and Snowflake Schemas

Finding the appropriate tables and columns you need for a report can be painful in a
normalized database simply because of the number of tables involved. Add to this the fact
that nothing forces database developers to maintain good naming conventions in an LOB
database. It's relatively easy to find the pertinent tables in AdventureWorks2012, because the
tables and columns have meaningful names. But imagine if the database contained tables
named Tablel, Table2, and so on, and columns named Columnl, Column2, and so on. Finding
the objects you need for your report would be a nightmare. Tools such as SQL Profiler might
help. For example, you could create a test environment, try to insert some data through an
LOB application, and have SQL Profiler identify where the data was inserted. A normalized
schema is not very narrative. You cannot easily spot the storage location for data that mea-
sures something, such as the sales amount in this example, or the data that gives context to
these measures, such as countries and years.

In addition, a query that joins 10 tables, as would be required in reporting sales by coun-
tries and years, would not be very fast. The query would also read huge amounts of data—
sales over multiple years—and thus would interfere with the regular transactional work of
inserting and updating the data.

Another problem in this example is the fact that there is no explicit lookup table for dates.
You have to extract years from date or date/time columns in sales tables, such as OrderDate
from the SalesOrderHeader table in this example. Extracting years from a date column is not
such a big deal; however, the first question is, does the LOB database store data for multiple
years? In many cases, LOB databases are purged after each new fiscal year starts. Even if you
have all of the historical data for the sales transactions, you might have a problem showing
the historical data correctly. For example, you might have only the latest customer address,
which might prevent you from calculating historical sales by country correctly.

The AdventureWorks2012 sample database stores all data in a single database. However, in
an enterprise, you might have multiple LOB applications, each of which might store data in its
own database. You might also have part of the sales data in one database and part in another.
And you could have customer data in both databases, without a common identification. In
such cases, you face the problems of how to merge all this data and how to identify which
customer from one database is actually the same as a customer from another database.

Finally, data quality could be low. The old rule, “garbage in garbage out,” applies to analy-
ses as well. Parts of the data could be missing; other parts could be wrong. Even with good
data, you could still have different representations of the same data in different databases.
For example, gender in one database could be represented with the letters F and M, and in
another database with the numbers 1 and 2.

The problems listed in this section are indicative of the problems that led designers to cre-
ate different schemas for Bl applications. The Star and Snowflake schemas are both simplified
and narrative. A data warehouse should use Star and/or Snowflake designs. You'll also some-
times find the term dimensional model used for a DW schema. A dimensional model actually
consists of both Star and Snowflake schemas. This is a good time to introduce the Star and
Snowflake schemas.

Data Warehouse Logical Design

Star Schema

Often, a picture is worth more than a thousand words. Figure 1-2 shows a Star schema, a
diagram created in SSMS from a subset of the tables in the AdventureWorksDW2012 sample
database.

In Figure 1-2, you can easily spot how the Star schema got its name—it resembles
a star. There is a single central table, called a fact table, surrounded by multiple tables
called dimensions. One Star schema covers one business area. In this case, the schema
covers Internet sales. An enterprise data warehouse covers multiple business areas and
consists of multiple Star (and/or Snowflake) schemas.

DimDate DimProduct
ﬂ Datekey = ﬂ Productkey |
_I FullDatealternatekey _I Productalternatekey —

_I DaylumberOfweek | _I ProductSubcatego...

_I EnglishDayNameF... _I WweightUnitMeasur .,
_I SpanishDayhamed, .,

|
FrenchDayMamgof, ..
=

_I DayMumberOFflont! =
=

SizelnitMeasured. ..

Englis] ducthame

L richOdnd it ame | X

. ks
DimCustomer FactInternetSales DimPromotion
ﬂ Customerkey A Productkey ﬁ ﬂ Promationkey Y
| Geographykey OrderDatekey J | Promationalternat...
_I Customernlternate...< 9 5 DueDatekey e e EnglishPromationt. ..
_I Title | ShipDatekey _I SpanishPromation. ..
_I FirstMarne Customerkey _I FrenchPramationly B
_I Middletlame Promotionkey _I DiscountPct
_I Lasthame | Currencykey _I EnglishPramotionT. ..
_I NarneStyle SalesTerritoryKey _I SpanishPromotionT =l
1 w
_I BlrthDate [L I (U PR Y R By
|

co_'oob

S IesTerrltory
? sTerritorykey ‘
_I SalesTerritarvaler, ..

SalesTerritoryRegion
N =

MaritalStatiis LI /\

DimCurrency
j Currencykey
_I CurrencyAlternatekey

_I CurrencyMame

FIGURE 1-2 A Star schema example.

The fact table is connected to all the dimensions with foreign keys. Usually, all foreign keys
taken together uniquely identify each row in the fact table, and thus collectively form a unique
key, so you can use all the foreign keys as a composite primary key of the fact table. You can
also add a simpler key. The fact table is on the “many” side of its relationships with the dimen-
sions. If you were to form a proposition from a row in a fact table, you might express it with
a sentence such as, "Customer A purchased product B on date C in quantity D for amount E."
This proposition is a fact; this is how the fact table got its name.

Lesson 1: Introducing Star and Snowflake Schemas

The Star schema evolved from a conceptual model of a cube. You can imagine all sales
as a big box. When you search for a problem in sales data, you use a divide-and-conquer
technique: slicing the cube over different categories of customers, products, or time. In other
words, you slice the cube over its dimensions. Therefore, customers, products, and time
represent the three dimensions in the conceptual model of the sales cube. Dimension tables
(dimensions) got their name from this conceptual model. In a logical model of a Star schema,
you can represent more than three dimensions. Therefore, a Star schema represents a multi-
dimensional hypercube.

As you already know, a data warehouse consists of multiple Star schemas. From a business
perspective, these Star schemas are connected. For example, you have the same customers
in sales as in accounting. You deal with many of the same products in sales, inventory, and
production. Of course, your business is performed at the same time over all the different busi-
ness areas. To represent the business correctly, you must be able to connect the multiple Star
schemas in your data warehouse. The connection is simple — you use the same dimensions
for each Star schema. In fact, the dimensions should be shared among multiple Star schemas.
Dimensions have foreign key relationships with multiple fact tables. Dimensions with connec-
tions to multiple fact tables are called shared or conformed dimensions. Figure 1-3 shows a
conformed dimension from the AdventureWorksDW2012 sample database with two different
fact tables sharing the same dimension.

DimProduct FactInternetSales

ﬂ Productkey = J Productkey =
_I Productalternatekey _I OrderDatekey

_I ProductSubcategorykey _I Duelatekey

_I WeightUnitMeasureCode | _I ShipDatekey |
_I SizeUnitMeasureCode 9 e _I Cuskomerkey

_I EnglishProductiame _I Promotionkey

_I SpanishProductMarme _I Currencykey

_I FrenchProductiame _I SalesTerritorykey

_I StandardCost _%‘I SalesOrderiumber

_! il:liljedGoodsFlag ;I %‘l fale.sF)rl:j?rLulﬂeNumber ;I

FactResellerSales

J Productkey

_I OrderDatekey
_I DueDatekey
_I ShipDatekey

_I Resellerkey

_I Employeekey

|»

_I Promotionkey
_I Currencykey
_I SalesTerritorykey
_%‘I SalesOrderiumber

[I I, ;I

FIGURE 1-3 DimProduct is a shared dimension.

Data Warehouse Logical Design

In the past, there was a big debate over whether to use shared or private dimensions. Pri-
vate dimensions are dimensions that pertain to only a single Star schema. However, it is quite
simple to design shared dimensions; you do not gain much from the design-time perspective
by using private dimensions. In fact, with private dimensions, you lose the connections be-
tween the different fact tables, so you cannot compare the data in different fact tables over
the same dimensions. For example, you could not compare sales and accounting data for the
same customer if the sales and accounting fact tables didn't share the same customer dimen-
sion. Therefore, unless you are creating a small proof-of-concept (POC) project that covers
only a single business area where you do not care about connections with different business
areas, you should always opt for shared dimensions.

A data warehouse is often the source for specialized analytical database management sys-
tems, such as SQL Server Analysis Services (SSAS). SSAS is a system that performs specialized
analyses by drilling down and is used for analyses that are based on the conceptual model
of a cube. Systems such as SSAS focus on a single task and fast analyses, and they're consid-
erably more optimized for this task than general systems such as SQL Server. SSAS enables
analysis in real time, a process called online analytical processing (OLAP). However, to get such
performance, you have to pay a price. SSAS is out of the scope of this book, but you have to
know the limitations of SSAS to prepare a data warehouse in a way that is useful for SSAS.
One thing to remember is that in an SSAS database, you can use shared dimensions only. This
is just one more reason why you should prefer shared to private dimensions.

Snowflake Schema

Figure 1-4 shows a more detailed view of the DimDate dimension from the AdventureWorks-
DW2012 sample database.

The highlighted attributes show that the dimension is denormalized. It is not in third normal
form. In third normal form, all non-key columns should nontransitively depend on the key. A
different way to say this is that there should be no functional dependency between non-key
columns. You should be able to retrieve the value of a non-key column only if you know the
key. However, in the DimDate dimension, if you know the month, you obviously know the
calendar quarter, and if you know the calendar quarter, you know the calendar year.

In a Star schema, dimensions are denormalized. In contrast, in an LOB normalized schema,
you would split the table into multiple tables if you found a dependency between non-key
columns. Figure 1-5 shows such a normalized example for the DimProduct, DimProduct-
Subcategory and DimProductCategory tables from the AdventureWorksDW2012 database.

Lesson 1: Introducing Star and Snowflake Schemas

10

DimDate

Daterey
FullCxateAl ternates ey
DayhumberOfiniesk
ErglishDayameCfWeek
SpanistDayMameOMWesk,
FrenchDayhameON Woek
DaytdumberOfvonth
DaytumberOfYear
WeekiNumberOfYear
Englishivonthidame
SparishiMonthiame
Frendhivonttiame

Monthirarmber Of ear
Calerdar uartor
Calerdaryesr
CalendarSemester

FlscalCuarter
FisualYear
FisralSemestor

FIGURE 1-4 The DimDate denormalized dimension.

i

DimProduct

Productiey
Productilbermateliey

Productsubeatenqontiey

- WelghtUnifVeasureCode

SizelnitMessureCode
EnglishProductiame

: SpanishProductheme

FrerchProductiame
StardardCost
FirishedGoodslag

|| Color

DimProductSubcategory
%] Productsubestegoryiiey
| ProductSubcatenoryAltematekey

e T EnglishProductsubeategontame

| SpenisrProductSubcategorytlame
FrenchProductSubeategaryidame
ProductCategoryiey |

DimProductCategory
| ProduciCategorykey

| ProductCategorylternateiey
_I ErnglishiProductCategoryiame
_I SpanishProductCategorytames
_I FrenchProductCategorytame

FIGURE 1-5 The DimProduct normalized dimension.

The DimProduct dimension is not denormalized. The DimProduct table does not contain
the subcategory name, only the ProductSubcategoryKey value for the foreign key to the
DimProductSubcategory lookup table. Similarly, the DimProductSubcategory table does not
contain a category name; it just holds the foreign key ProductCategoryKey from the Dim-
ProductCategory table. This design is typical of an LOB database schema.

You can imagine multiple dimensions designed in a similar normalized way, with a central
fact table connected by foreign keys to dimension tables, which are connected with foreign
keys to lookup tables, which are connected with foreign keys to second-level lookup tables.

Data Warehouse Logical Design

In this configuration, a star starts to resemble a snowflake. Therefore, a Star schema with nor-
malized dimensions is called a Snowflake schema.

In most long-term projects, you should design Star schemas. Because the Star schema is
simpler than a Snowflake schema, it is also easier to maintain. Queries on a Star schema are
simpler and faster than queries on a Snowflake schema, because they involve fewer joins. The
Snowflake schema is more appropriate for short POC projects, because it is closer to an LOB
normalized relational schema and thus requires less work to build.

EXAM TIP

If you do not use OLAP cubes and your reports query your data warehouse directly, then
using a Star instead of a Snowflake schema might speed up the reports, because your
reporting queries involve fewer joins.

In some cases, you can also employ a hybrid approach, using a Snowflake schema only for
the first level of a dimension lookup table. In this type of approach, there are no additional
levels of lookup tables; the first-level lookup table is denormalized. Figure 1-6 shows such a
partially denormalized schema.

DimCustomer o——a FactInternetSales
ﬂ Cuskomerkey = J Productkey]
_I GeographyKey J OrderDatekey
_I Customeralternatek ey | J DueDatekey
DimGeography _I it ShipDatekey |
ﬂ Geographykey _I Firsthame . Cuskomerkey
_I City] _I Middlehame : Promotionkey
_I StateProvinceCode _I Lasthame Currencykey
_I StateProvinceMame _I MameStyle I SalesTerritorykey
_I CountryRegionCode _! BirthDate ;I El SalesOrderturnber ;I
_I EnglishCountryRegiontame e
_l SpanishCountryRegionManme
_I FrenchCountryRegiontame
|| postaicoce DimReseller FactResellerSales
_I SalesTerritarykey PR ﬂ Resellerkey = [FO—— J Productkey =
_I IpAddressLocator _I Geographykey _I OrderDatekey
_I Reselleralkernaekey L _I Duelatekey -
_I Phone _I ShipDatekey
_I BusinessType _I Resellerkey
_I ResellerMame _I Employeekey
_I MumberEmployess _I Promotionkey
| OrderFrequency ;I _I Currencykey ;I

FIGURE 1-6 Partially denormalized dimensions.

In Figure 1-6, the DimCustomer and DimReseller dimensions are partially normalized. The
dimensions now contain only the GeographyKey foreign key. However, the DimGeography
table is denormalized. There is no additional lookup table even though a city is in a region
and a region is in a country. A hybrid design such as this means that geography data is writ-
ten only once and needs to be maintained in only a single place. Such a design is appropriate

Lesson 1: Introducing Star and Snowflake Schemas

11

12

when multiple dimensions share the same attributes. In other cases, you should use the sim-
pler Star schema. To repeat: you should use a Snowflake schema only for quick POC projects.

(Quick Check

m How do you connect multiple Star schemas in a DW?

Quick Check Answer

®m You connect multiple Star schemas through shared dimensions.

Granularity Level

The number of dimensions connected with a fact table defines the level of granularity of
analysis you can get. For example, if no products dimension is connected to a sales fact table,
you cannot get a report at the product level—you could get a report for sales for all products
only. This kind of granularity is also called the dimensionality of a Star schema.

But there is another kind of granularity, which lets you know what level of information
a dimension foreign key represents in a fact table. Different fact tables can have different
granularity in a connection to the same dimension. This is very typical in budgeting and plan-
ning scenarios. For example, you do not plan that customer A will come on date B to store C
and buy product D for amount E. Instead, you plan on a higher level—you might plan to sell
amount E of products C in quarter B in all stores in that region to all customers in that region.
Figure 1-7 shows an example of a fact table that uses a higher level of granularity than the
fact tables introduced so far.

In the AdventureWorksDW2012 database, the FactSalesQuota table is the fact table with
planning data. However, plans are made for employees at the per-quarter level only. The
plan is for all customers, all products, and so on, because this Star schema uses only the
DimDate and DimEmployee dimensions. In addition, planning occurs at the quarterly level.
By investigating the content, you could see that all plans for a quarter are bound to the first
day of a quarter. You would not need to use the DateKey; you could have only CalendarYear
and CalendarQuarter columns in the FactSalesQuota fact table. You could still perform joins
to DimDate by using these two columns—they are both present in the DimDate table as
well. However, if you want to have a foreign key to the DimDate dimension, you do need the
DateKey. A foreign key must refer to unique values on the “one” side of the relationship. The
combination of CalendarYear and CalendarQuarter is, of course, not unique in the DimDate
dimension; it repeats approximately 90 times in each quarter.

Data Warehouse Logical Design

FactSalesQuota DimEmployee

| | salesquotakey -l 9] Employeekey -
_I Employeskey _I ParentEmploveskey —I
_| Datekey _| EmployeehlationallDalsr. ..

_I Calendarear _I ParentEmployeehationall..
_! Ca.lendarQuarter - _I SalesTerritorykey

‘I | » | _I FirsthMame ;I
DimDate

ﬂ Datekey (=

_I FullDatealternatekey

_I DayMumberOfweek

_I EnglishDayMameofwesk o

_I SpanishDayhameofwesk

_I FrenchDayMameofwesk

_I DayMumberOFMonth

_I DayMumberOFear
Lo e o

=

FIGURE 1-7 A fact table with a higher level of granularity.

Auditing and Lineage

In addition to tables for reports, a data warehouse may also include auditing tables. For every
update, you should audit who made the update, when it was made, and how many rows were
transferred to each dimension and fact table in your DW. If you also audit how much time was
needed for each load, you can calculate the performance and take action if it deteriorates.
You store this information in an auditing table or tables. However, you should realize that
auditing does not help you unless you analyze the information regularly.

Auditing tables hold batch-level information about regular DW loads, but you might
also want or need to have more detailed information. For example, you might want to know
where each row in a dimension and/or fact table came from and when it was added. In such
cases, you must add appropriate columns to the dimension and fact tables. Such detailed
auditing information is also called lineage in DW terminology. To collect either auditing or
lineage information, you need to modify the extract-transform-load (ETL) process you use for
DW loads appropriately.

If your ETL tool is SQL Server Integration Services (SSIS), then you should use SSIS logging.
SSIS has extensive logging support. In addition, SSIS also has support for lineage information.

Lesson 1: Introducing Star and Snowflake Schemas

13

14

Reviewing the AdventureWorksDW2012 Internet
Sales Schema

The AdventureWorksDW2012 sample database is a good example of a data warehouse. It
has all the elements needed to allow you to see examples of various types of dimensional
modeling.

EXERCISE 1 Review the AdventureWorksDW2012 Database Schema
In this exercise, you review the database schema.

1. Start SSMS and connect to your instance of SQL Server. Expand the Databases folder
and then the AdventureWorksDW2012 database.

2. Right-click the Database Diagrams folder and select the New Database Diagram op-
tion. If no diagrams were ever created in this database, you will see a message box
informing you that the database has no support objects for diagramming. If that mes-
sage appears, click Yes to create the support objects.

3. From the Add Table list, select the following tables (click each table and then click the
Add button):
m DimCustomer
m DimDate
m DimGeography
m DimProduct
m DimProductCategory
m DimProductSubcategory
® FactinternetSales

Your diagram should look similar to Figure 1-8.

Data Warehouse Logical Design

FIGURE 1-8 The AdventureWorksDW2012 Internet Sales Schema.

4. Thoroughly analyze the tables, columns, and relationships.

5. Save the diagram with the name Practice_01_01_InternetSales.

EXERCISE 2 Analyze the Diagram
Review the AdventureWorksDW2012 schema to note the following facts:

m The DimDate dimension has no additional lookup tables associated with it and
therefore uses the Star schema.

m The DimProduct table is snowflaked; it uses the DimProductSubcategory lookup
table, which further uses the DimProductCategory lookup table.

m The DimCustomer dimension uses a hybrid schema—the first level of the Snowflake
schema only through the DimGeography lookup table. The DimGeography table is
denormalized; it does not have a relationship with any other lookup table.

m There are no specific columns for lineage information in any of the tables.

Close the diagram.

NOTE CONTINUING WITH PRACTICES

Do not exit SSMS if you intend to continue immediately with the next practice.

Lesson 1: Introducing Star and Snowflake Schemas

DimProduct FactInternetSales DimDate
ﬂ Productkey ;I J Productkey = ﬂ Datekey ;I
_I Productalternatekey - _I OrderDatekey _I FullDatealternatekey J
_I ProductSubcategorykey _I Duelatekey . _I DayMumberOfweek
_I WeightUnitMeasureCode _I ShipDatekey _I EnglishDayMameofwesk
_I SizeUnitMeasureCode _I Customerkey [Poe——Em _I SpanishDayhameofwesk
_I EnglishProductiame ;I _I Promotionkey | FrenchDayMameofwesk ;I
Currencyke
: S B

DimProductSubcategory
_%‘I ProductSubcategorykey ﬂ
_I ProductSubcategoryalte. .,
_| EnglishProductSubeateq. . DimCustomer looe——e- DimGeography

| sparishProductsubcate... % ﬂ Customerkey = ﬂ Geographykey | =

_I Geographykey _I City
_I Customeralternatekey . _I StateProvinceCode

DimProduct(:ategor\‘.lI _I Title _I StateProvincehlame —
j ProductCategorykey ;I _I FirstMarme _I CountryRegionCode
_I ProductCategoryalternat, .. J _I MiddleMame _I EnglishCountryRegionMame
_I EnglishProductCategoryh... _I LastMame [ich S sk D nine bl =

e im0 ;I [e ;I

15

16

Lesson Summary

m The Star schema is the most common design for a DW.

m The Snowflake schema is more appropriate for POC projects.

®m You should also determine the granularity of fact tables, as well as auditing and lineage

needs.

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1. Reporting from a Star schema is simpler than reporting from a normalized online
transactional processing (OLTP) schema. What are the reasons for wanting simpler
reporting? (Choose all that apply.)

A.

A Star schema typically has fewer tables than a normalized schema. Therefore,
queries are simpler because they require fewer joins.

A Star schema has better support for numeric data types than a normalized rela-
tional schema; therefore, it is easier to create aggregates.

There are specific Transact-SQL expressions that deal with Star schemas.

A Star schema is standardized and narrative; you can find the information you
need for a report quickly.

2. You are creating a quick POC project. Which schema is the most suitable for this kind
of a project?

Star schema
Normalized schema
Snowflake schema

XML schema

3. A Star schema has two types of tables. What are those two types? (Choose all that
apply.)

A.

B.
C.

Lookup tables
Dimensions
Measures

Fact tables

Data Warehouse Logical Design

Lesson 2: Designing Dimensions

Star and Snowflake schemas are the de facto standard. However, the standard does not end
with schema shapes. Dimension and fact table columns are part of this informal standard as
well and are introduced in this lesson, along with natural hierarchies, which are especially use-
ful as natural drill-down paths for analyses. Finally, the lesson discusses a common problem
with handling dimension changes over time.

After this lesson, you will be able to:
m Define dimension column types.
m Use natural hierarchies.

m Understand and resolve the slowly changing dimensions problem.

Estimated lesson time: 40 minutes

Dimension Column Types

Dimensions give context to measures. Typical analysis includes pivot tables and pivot graphs.
These pivot on one or more dimension columns used for analysis—these columns are called
attributes in DW and OLAP terminology. The naming convention in DW/OLAP terminology
is a little odd; in a relational model, every column represents an attribute of an entity. Don't
worry too much about the correctness of naming in DW/OLAP terminology. The important
point here is for you to understand what the word “attribute” means in a DW/OLAP context.

Pivoting makes no sense if an attribute’s values are continuous, or if an attribute has too
many distinct values. Imagine how a pivot table would look if it had 1,000 columns, or how a
pivot graph would look with 1,000 bars. For pivoting, discrete attributes with a small number
of distinct values is most appropriate. A bar chart with more than 10 bars becomes difficult
to comprehend. Continuous columns or columns with unique values, such as keys, are not
appropriate for analyses.

If you have a continuous column and you would like to use it in analyses as a pivoting
attribute, you should discretize it. Discretizing means grouping or binning values to a few
discrete groups. If you are using OLAP cubes, SSAS can help you. SSAS can discretize continu-
ous attributes. However, automatic discretization is usually worse than discretization from a
business perspective. Age and income are typical attributes that should be discretized from
a business perspective. One year makes a big difference when you are 15 years old, and much
less when you are 55 years old. When you discretize age, you should use narrower ranges for
younger people and wider ranges for older people.

Lesson 2: Designing Dimensions

17

18

IMPORTANT AUTOMATIC DISCRETIZATION

Use automatic discretization for POC projects only. For long-term projects, always dis-
cretize from a business perspective.

Columns with unique values identify rows. These columns are keys. In a data warehouse,
you need keys just like you need them in an LOB database. Keys uniquely identify entities.
Therefore, keys are the second type of columns in a dimension.

After you identify a customer, you do not refer to that customer with the key value. Having
only keys in a report does not make the report very readable. People refer to entities by using
their names. In a DW dimension, you also need one or more columns that you use for naming
an entity.

A customer typically has an address, a phone number, and an email address. You do not
analyze data on these columns. You do not need them for pivoting. However, you often need
information such as the customer’s address on a report. If that data is not present in a DW,
you will need to get it from an LOB database, probably with a distributed query. It is much
simpler to store this data in your data warehouse. In addition, queries that use this data per-
form better, because the queries do not have to include data from LOB databases. Columns
used in reports as labels only, not for pivoting, are called member properties.

You can have naming and member property columns in multiple languages in your dimen-
sion tables, providing the translation for each language you need to support. SSAS can use
your translations automatically. For reports from a data warehouse, you need to manually
select columns with appropriate language translation.

In addition to the types of dimension columns already defined for identifying, naming,
pivoting, and labeling on a report, you can have columns for lineage information, as you saw
in the previous lesson. There is an important difference between lineage and other columns:
lineage columns are never exposed to end users and are never shown on end users’ reports.

To summarize, a dimension may contain the following types of columns:
m Keys Used to identify entities

m Name columns Used for human names of entities

m Attributes Used for pivoting in analyses

= Member properties Used for labels in a report

m Lineage columns Used for auditing, and never exposed to end users

Data Warehouse Logical Design

Hierarchies

Figure 1-9 shows the DimCustomer dimension of the AdventureWorksDW2012 sample
database.

DimCustomer

ﬂ Cuskomerkey

_I Geographykey

_I Customeraltematek ey
| Tide

_I Firsthame

_I MiddleMarme

_I LastMame

_I Mamestyle

| sirthoate

_I MaritalStatus

_I Suffix

_I Gender

_I Emailaddress

_I ‘fearlyIncome
TotalChildren
MNumberChildrenAtHome:
EnglishEducation

|»

SpanishEducation
FrenchEducation
EnglishOccupation
SpanishOccupation
FrenchOccupation
HouseOwnerAag
MNumberCarsCwned
AddressLinel
AddressLineZ
Phone
DateFirstPurchase
CommuteDistance ;I

0 Y v

FIGURE 1-9 The DimCustomer dimension.

In the figure, the following columns are attributes (columns used for pivoting):
m BirthDate (after calculating age and discretizing the age)

m MaritalStatus

m Gender

m Yearlylncome (after discretizing)

m TotalChildren

m NumberChildrenAtHome

m EnglishEducation (other education columns are for translations)

m EnglishOccupation (other occupation columns are for translations)
m HouseOwnerFlag

m NumberCarsOwned

m CommuteDistance

Lesson 2: Designing Dimensions

All these attributes are unrelated. Pivoting on MaritalStatus, for example, is unrelated to
pivoting on Yearlylncome. None of these columns have any functional dependency between
them, and there is no natural drill-down path through these attributes. Now look at the Dim-
Date columns, as shown in Figure 1-10.

DimDate

ﬂ Datekey

_I FullDatealternatekey
_I DayMumberOfweek
_I EnglishDayMameofwesk
_I SpanishDayhameOrwesk,
_I FrenchDayMameofwesek
_I DayMumberOfonth
_I DayMumberOfrear

_I WeekMumberCfyear
_I EnglishMonthMame

_I SpanishMonthiame
_I FrenchMonthiarme

_I MonthMumberOfYear
_I CalendarQuarter

_I Calendarear

_I CalendarSemester

_I FiscalQuarter

_I Fiscalfear

_I FiscalSemester

FIGURE 1-10 The DimDate dimension.

Some attributes of the DimDate edimension include the following (not in the order shown
in the figure):

m FullDateAlternateKey (denotes a date in date format)

m EnglishMonthName

m CalendarQuarter

m CalendarSemester

m CalendarYear

You will immediately notice that these attributes are connected. There is a functional de-
pendency among them, so they break third normal form. They form a hierarchy. Hierarchies
are particularly useful for pivoting and OLAP analyses—they provide a natural drill-down
path. You perform divide-and-conquer analyses through hierarchies.

Hierarchies have levels. When drilling down, you move from a parent level to a child level.
For example, a calendar drill-down path in the DimDate dimension goes through the follow-
ing levels: CalendarYear — CalendarSemester — CalendarQuarter — EnglishMonthName —
FullDateAlternateKey.

At each level, you have members. For example, the members of the month level are, of
course, January, February, March, April, May, June, July, August, September, October, Novem-
ber, and December. In DW and OLAP jargon, rows on the leaf level—the actual dimension

Data Warehouse Logical Design

rows—are called members. This is why dimension columns used in reports for labels are called
member properties.

In a Snowflake schema, lookup tables show you levels of hierarchies. In a Star schema, you
need to extract natural hierarchies from the names and content of columns. Nevertheless,
because drilling down through natural hierarchies is so useful and welcomed by end users,
you should use them as much as possible.

Note also that attribute names are used for labels of row and column groups in a pivot
table. Therefore, a good naming convention is crucial for a data warehouse. You should al-
ways use meaningful and descriptive names for dimensions and attributes.

Slowly Changing Dimensions

There is one common problem with dimensions in a data warehouse: the data in the dimen-
sion changes over time. This is usually not a problem in an OLTP application; when a piece
of data changes, you just update it. However, in a DW, you have to maintain history. The
question that arises is how to maintain it. Do you want to update only the changed data, as in
an OLTP application, and pretend that the value was always the last value, or do you want to
maintain both the first and intermediate values? This problem is known in DW jargon as the
Slowly Changing Dimension (SCD) problem.

The problem is best explained in an example. Table 1-1 shows original source OLTP data
for a customer.

TABLE 1-1 Original OLTP Data for a Customer

Customerld FullName City Occupation

17 Bostjan Strazar Vienna Professional

The customer lives in Vienna, Austria, and is a professional. Now imagine that the customer
moves to Ljubljana, Slovenia. In an OLTP database, you would just update the City column,
resulting in the values shown in Table 1-2.

TABLE 1-2 OLTP Data for a Customer After the City Change

Customerld FullName City Occupation

17 Bostjan Strazar Ljubljana Professional

If you create a report, all the historical sales for this customer are now attributed to the
city of Ljubljana, and (on a higher level) to Slovenia. The fact that this customer contributed to
sales in Vienna and in Austria in the past would have disappeared.

In a DW, you can have the same data as in an OLTP database. You could use the same key,
such as the business key, for your Customer dimension. You could update the City column
when you get a change notification from the OLTP system, and thus overwrite the history.

Lesson 2: Designing Dimensions

21

22

) This kind of change management is called Type 1 SCD. To recapitulate, Type 1 means over-

writing the history for an attribute and for all higher levels of hierarchies to which that at-
tribute belongs.

But you might prefer to maintain the history, to capture the fact that the customer contrib-
uted to sales in another city and country or region. In that case, you cannot just overwrite the
data; you have to insert a new row containing new data instead. Of course, the values of other
columns that do not change remain the same. However, that creates a new problem. If you
simply add a new row for the customer with the same key value, the key would no longer be
unique. In fact, if you tried to use a primary key or unique constraint as the key, the constraint
would reject such an insert. Therefore, you have to do something with the key. You should not
modify the business key, because you need a connection with the source system. The solution
is to introduce a new key, a data warehouse key. In DW terminology, this kind of key is called a
surrogate key.

Preserving the history while adding new rows is known as Type 2 SCD. When you imple-
ment Type 2 SCD, for the sake of simpler querying, you typically also add a flag to denote
which row is current for a dimension member. Alternatively, you could add two columns
showing the interval of validity of a value. The data type of the two columns should be Date,
and the columns should show the values Valid From and Valid To. For the current value, the
Valid To column should be NULL. Table 1-3 shows an example of the flag version of Type 2
SCD handling.

TABLE 1-3 An SCD Type 2 Change

DWCId Customerld FullName City Occupation Current
17 17 Bostjan Strazar Vienna Professional 0
289 17 Bostjan Strazar Ljubljana Professional 1

You could have a mixture of Type 1 and Type 2 changes in a single dimension. For exam-
ple, in Table 1-3, you might want to maintain the history for the City column but overwrite the
history for the Occupation column. That raises yet another issue. When you want to update
the Occupation column, you may find that there are two (and maybe more) rows for the same
customer. The question is, do you want to update the last row only, or all the rows? Table 1-4
shows a version that updates the last (current) row only, whereas Table 1-5 shows all of the
rows being updated.

TABLE 1-4 An SCD Type 1 and Type 2 Mixture, Updating the Current Row Only

DWCid Customerld FullName City Occupation Current
17 17 Bostjan Strazar Vienna Professional 0
289 17 Bostjan Strazar Ljubljana Management 1

Data Warehouse Logical Design

TABLE 1-5 An SCD Type 1 and Type 2 Mixture, Updating All Rows

DwCid Customerld FullName City Occupation Current
17 17 Bostjan Strazar Vienna Management 0
289 17 Bostjan Strazar Ljubljana Management 1

Although Type 1 and Type 2 handling are most common, other solutions exist. Especially
well-known is Type 3 SCD, in which you manage a limited amount of history through addi-
tional historical columns. Table 1-6 shows Type 3 handling for the City column.

TABLE 1-6 SCD Type 3

Customerld FullName CurrentCity PreviousCity Occupation

17 Bostjan Strazar Ljubljana Vienna Professional

You can see that by using only a single historical column, you can maintain only one his-
torical value per column. So Type 3 SCD has limited usability and is far less popular than Types
land 2.

Which solution should you implement? You should discuss this with end users and subject
matter experts (SMEs). They should decide for which attributes to maintain the history, and
for which ones to overwrite the history. You should then choose a solution that uses Type 2,
Type 1, or a mixture of Types 1 and 2, as appropriate.

However, there is an important caveat. To maintain customer history correctly, you
must have some attribute that uniquely identifies that customer throughout that customer’s
history, and that attribute must not change. Such an attribute should be the original—the
business key. In an OLTP database, business keys should not change.

Business keys should also not change if you are merging data from multiple sources. For
merged data, you usually have to implement a new, surrogate key, because business keys
from different sources can have the same value for different entities. However, business keys
should not change; otherwise you lose the connection with the OLTP system. Using surro-
gate keys in a data warehouse for at least the most common dimensions (those representing
customers, products, and similar important data), is considered a best practice. Not changing
OLTP keys is a best practice as well.

EXAM TIP

Make sure you understand why you need surrogate keys in a data warehouse.

Lesson 2: Designing Dimensions

23

Reviewing the AdventureWorksDW2012 Dimensions

The AdventureWorksDW2012 sample database has many dimensions. In this practice, you will
explore some of them.

EXERCISE 1 Explore the AdventureWorksDW2012 Dimensions

In this exercise, you create a diagram for the dimensions.

1.

24

If you closed SSMS, start it and connect to your SQL Server instance. Expand the Data-
bases folder and then the AdventureWorksDW2012 database.

Right-click the Database Diagrams folder, and then select the New Database Diagram
option.

From the Add Table list, select the following tables (click each table and then click the
Add button):

m DimProduct

m DimProductCategory

m DimProductSubcategory

Your diagram should look like Figure 1-11.

Try to figure out which columns are used for the following purposes:
m Keys

= Names

m Translations

m Attributes

m Member properties

m Lineage

= Natural hierarchies

Try to figure out whether the tables in the diagram are prepared for a Type 2 SCD
change.

Add the DimSalesReason table to the diagram.

Try to figure out whether there is some natural hierarchy between attributes of the
DimSalesReason dimension. Your diagram should look like Figure 1-12.

Save the diagram with the name Practice_01_02_Dimensions.

Data Warehouse Logical Design

EnglishProductiame
SpanishProductiame
FrenchProducthame
StandardCost
FinishedGoodsHag
Calar
SafetyStockLewvel

ReorderPoint

ProductCategorykey

DimProductSubcategory DimProduct
ﬂ ProductSubcategorykey Sy ﬂ Productkey =
_I ProductSubcategoryalternatekey _I ProductAlternatekey
_I EnglishProductSubcategoryhame _I ProductSubcategoryKey
_I SpanishProductSubcategoryia... _I WeightUnitMeasureCode
_I FrenchProductSubcategoryMame _I SizeUnitteasureCode
_I PraductCategarykey _I EnglishProductiame
_I SpanishProductMarme
_I FrenchProductMamme
_I StandardCost
_I FinishedGoodsFlag
_I Calar
DimProductCategory _I SafetyStackLevel
ﬂ ProductCategorykey _I RearderPoint
_I ProductCategoryalternatekey _I ListPrice
_I EnglishProductCategoryMame _I Size
_I SpanishProductCategaryMarne _I SizeRangs
_I FrenchProduckCateqoryhame _I Weight |
_I DaysToManufackure
_I ProductLine
_I DealerPrice
_I Class
_I Skyle
_I ModelMame
_I LargePhoto
Ié EnglishDescription ;I
FIGURE 1-11 DimProduct and related tables.
DimProductSubcategory DimProduct DimSalesReason
ﬂ ProductSubcategorykey O ——Ne Productkiey = ﬂ SalesReasonkey
_I ProductSubcategoryalternatekey ProductAlernaekey _I SalesReasonalternatekey
_I EnglishProductSubcategoryhame ProductSubcategarykey _I SalesReasonhame
_I SpanishProductSubcategoryiame WeightUnitMeasureCode _I SalesReasonReasonType
_I FrenchProductSubcategoryhlame SizeUnittzasureCode
]

DimProductCategory
ﬂ ProductCategorykey

_I ProductCategoryalternaterey ListPrice

EnglishPraductCategaryMame Size

|
_I SpanishProductCateqgoryMame
]

FrenchProductCategoryiame

SizeR.ange —
‘Weight

DaysToManufacture

ProductLine
DealerPrice
Class
Skyle

ModelMame

LargePhoto -
| »

] S S o =3

Yy

FIGURE 1-12 Adding DimSalesReason.

Lesson 2: Designing Dimensions

26

EXERCISE 2 Further Analyze the Diagram
In this exercise, review the database schema from the previous exercise to learn more:

m The DimProduct dimension has a natural hierarchy: ProductCategory —
ProductSubcategory — Product.

m The DimProduct dimension has many additional attributes that are useful for pivoting
but that are not a part of any natural hierarchy. For example, Color and Size are such
attributes.

m Some columns in the DimProduct dimension, such as the LargePhoto and Description
columns, are member properties.

m DimSalesReason uses a Star schema. In a Star schema, it is more difficult to spot natural
hierarchies. Though you can simply follow the lookup tables in a Snowflake schema
and find levels of hierarchies, you have to recognize hierarchies from attribute names
in a Star schema. If you cannot extract hierarchies from column names, you could also
check the data. In the DimSalesReason dimension, it seems that there is a natural hier-
archy: SalesReasonType — SalesReasonName.

Close the diagram.

NOTE CONTINUING WITH PRACTICES

Do not exit SSMS if you intend to continue immediately with the next practice.

Lesson Summary

m |n a dimension, you have the following column types: keys, names, attributes, member
properties, translations, and lineage.

® Some attributes form natural hierarchies.

m There are standard solutions for the Slowly Changing Dimensions (SCD) problem.

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1. Youimplement a Type 2 solution for an SCD problem for a specific column. What do
you actually do when you get a changed value for the column from the source system?

A. Add a column for the previous value to the table. Move the current value of the
updated column to the new column. Update the current value with the new value
from the source system.

Data Warehouse Logical Design

B. Insert a new row for the same dimension member with the new value for the
updated column. Use a surrogate key, because the business key is now duplicated.
Add a flag that denotes which row is current for a member.

C. Do nothing, because in a DW, you maintain history, you do not update dimen-
sion data.

D. Update the value of the column just as it was updated in the source system.
2. Which kind of a column is not a part of a dimension?

A. Attribute

B. Measure

C. Key

D. Member property

E. Name

3. How can you spot natural hierarchies in a Snowflake schema?
A. You need to analyze the content of the attributes of each dimension.
B. Lookup tables for each dimension provide natural hierarchies.
C. A Snowflake schema does not support hierarchies.

D. You should convert the Snowflake schema to the Star schema, and then you would
spot the natural hierarchies immediately.

Lesson 3: Designing Fact Tables

Fact tables, like dimensions, have specific types of columns that limit the actions that can be
taken with them. Queries from a DW aggregate data; depending on the particular type of
column, there are some limitations on which aggregate functions you can use. Many-to-many
relationships in a DW can be implemented differently than in a normalized relational schema.

After this lesson, you will be able to:
m Define fact table column types.
m Understand the additivity of a measure.

m Handle many-to-many relationships in a Star schema.

Estimated lesson time: 30 minutes

Lesson 3: Designing Fact Tables

27

28

Fact Table Column Types

Fact tables are collections of measurements associated with a specific business process. You
store measurements in columns. Logically, this type of column is called a measure. Measures
are the essence of a fact table. They are usually numeric and can be aggregated. They store
values that are of interest to the business, such as sales amount, order quantity, and discount
amount.

From Lesson 1 in this chapter, you already saw that a fact table includes foreign keys from
all dimensions. These foreign keys are the second type of column in a fact table. A fact table
is on the “many” side of the relationships with dimensions. All foreign keys together usually
uniquely identify each row and can be used as a composite primary key.

You often include an additional surrogate key. This key is shorter and consists of one or
two columns only. The surrogate key is usually the business key from the table that was used
as the primary source for the fact table. For example, suppose you start building a sales fact
table from an order details table in a source system, and then add foreign keys that pertain
to the order as a whole from the Order Header table in the source system. Tables 1-7, 1-8, and
1-9 illustrate an example of such a design process.

Table 1-7 shows a simplified example of an Orders Header source table. The Orderld
column is the primary key for this table. The Customerld column is a foreign key from the
Customers table. The OrderDate column is not a foreign key in the source table; however, it
becomes a foreign key in the DW fact table, for the relationship with the explicit date dimen-
sion. Note, however, that foreign keys in a fact table can—and usually are—replaced with DW
surrogate keys of DW dimensions.

TABLE 1-7 The Source Orders Header Table

Orderld Customerld Orderdate

12541 17 2012/02/21

Table 1-8 shows the source Order Details table. The primary key of this table is a composite
one and consists of the Orderld and Lineltemld columns. In addition, the Source Order Details
table has the Productld foreign key column. The Quantity column is the measure.

TABLE 1-8 The Source Order Details Table

Orderld Lineltemid Productid Quantity

12541 2 5 47

Table 1-9 shows the Sales Fact table created from the Orders Header and Order Details
source tables. The Order Details table was the primary source for this fact table. The Orderld,

Data Warehouse Logical Design

Lineltemld, and Quantity columns are simply transferred from the source Order Details table.
The Productld column from the source Order Details table is replaced with a surrogate DW
ProductKey column. The Customerld and OrderDate columns take the source Orders Header
table; these columns pertain to orders, not order details. However, in the fact table, they are
replaced with the surrogate DW keys CustomerKey and OrderDateKey.

TABLE 1-9 The Sales Fact Table

Orderld Lineltemid CustomerKey OrderDateKey ProductKey Quantity

12541 2 289 444 25 47

You do not need the Orderld and LineltemId columns in this sales fact table. For analyses,
you could create a composite primary key from the CustomerKey, OrderDateKey, and Product-
Key columns. However, you should keep the Orderld and Lineltemld columns to make quick
controls and comparisons with source data possible. In addition, if you were to use them as the
primary key, then the primary key would be shorter than one composed from all foreign keys.

The last column type used in a fact table is the lineage type, if you implement the lineage.
Just as with dimensions, you never expose the lineage information to end users. To recapitu-
late, fact tables have the following column types:

m Foreign keys
m Measures
m Lineage columns (optional)

m Business key columns from the primary source table (optional)

Additivity of Measures

Additivity of measures is not exactly a data warehouse design problem. However, you should
consider which aggregate functions you will use in reports for which measures, and which ag-
gregate functions you will use when aggregating over which dimension.

The simplest types of measures are those that can be aggregated with the SUM aggregate
function across all dimensions, such as amounts or quantities. For example, if sales for product
A were $200.00 and sales for product B were $150.00, then the total of the sales was $350.00.
If yesterday's sales were $100.00 and sales for the day before yesterday were $130.00, then
the total sales amounted to $230.00. Measures that can be summarized across all dimensions
are called additive measures.

Some measures are not additive over any dimension. Examples include prices and percent-
ages, such as a discount percentage. Typically, you use the AVERAGE aggregate function for
such measures, or you do not aggregate them at all. Such measures are called non-additive
measures. Often, you can sum additive measures and then calculate non-additive measures
from the additive aggregations. For example, you can calculate the sum of sales amount and
then divide that value by the sum of the order quantity to get the average price. On higher

Lesson 3: Designing Fact Tables

29

30

levels of aggregation, the calculated price is the average price; on the lowest level, it's the
data itself—the calculated price is the actual price. This way, you can simplify queries.

For some measures, you can use SUM aggregate functions over all dimensions but time.
Some examples include levels and balances. Such measures are called semi-additive measures.
For example, if customer A has $2,000.00 in a bank account, and customer B has $3,000.00,
together they have $5,000.00. However, if customer A had $5,000.00 in an account yesterday
but has only $2,000.00 today, then customer A obviously does not have $7,000.00 altogether.
You should take care how you aggregate such measures in a report. For time measures, you
can calculate average value or use the last value as the aggregate.

(Quick Check

®m You are designing an accounting system. Your measures are debit, credit, and
balance. What is the additivity of each measure?

Quick Check Answer

m Debit and credit are additive measures, and balance is a semi-additive measure.

Additivity of Measures in SSAS

SSAS is out of the scope of this book; however, you should know some facts about SSAS if
your data warehouse is the source for SSAS databases. SSAS has support for semi-additive
and non-additive measures. The SSAS database model is called the Business Intelligence
Semantic Model (BISM). Compared to the SQL Server database model, BISM includes much
additional metadata.

SSAS has two types of storage: dimensional and tabular. Tabular storage is quicker to de-
velop, because it works through tables like a data warehouse does. The dimensional model
more properly represents a cube. However, the dimensional model includes even more meta-
data than the tabular model. In BISM dimensional processing, SSAS offers semi-additive aggre-
gate functions out of the box. For example, SSAS offers the LastNonEmpty aggregate function,
which properly uses the SUM aggregate function across all dimensions but time, and defines
the last known value as the aggregate over time. In the BISM tabular model, you use the Data
Analysis Expression (DAX) language. The DAX language includes functions that let you build
semi-additive expressions quite quickly as well.

Many-to-Many Relationships

In a relational database, the many-to-many relationship between two tables is resolved
through a third intermediate table. For example, in the AdventureWorksDW2012 database,
every Internet sale can be associated with multiple reasons for the sale—and every reason
can be associated with multiple sales. Figure 1-13 shows an example of a many-to-many rela-

Data Warehouse Logical Design

tionship between FactinternetSales and DimSalesReason through the FactinternetSalesReason
intermediate table in the AdventureWorksDW2012 sample database.

FactInternetSales

J Productkey

_I OrderDatekey
_I DueDatekey
_I ShipDatekey

_I Cuskomerkey
A==
_| Promotionkey FactInternetSalesReason

SalesOrderiumber
_I Currencykey j _I SalesReasondlternatekey
; ?l SalesOrderLinehumber
_I SalesTerritorykey | SalesReasonhame

_?I SalesOrderiumber —%‘I SalesReasonkey _I SalesReasonReasonType
@l SalesOrderLineMumber

|»

ae=cs DimSalesReason
ﬂ SalesReasonkey

Revisionhumber

OrderCuantity

UnitPrice [
Extendedamount
UnitPriceDiscountPct
DiscountAmount
ProductStandardCost
TotalProductCost

SalesAmount ;I

FIGURE 1-13 A classic many-to-many relationship.

For a data warehouse in a relational database management system (RDBMS), this is the
correct model. However, SSAS has problems with this model. For reports from a DW, it is you,
the developer, who writes queries. In contrast, reporting from SSAS databases is done by us-
ing client tools that read the schema and only afterwards build a user interface (Ul) for select-
ing measures and attributes. Client tools create multi-dimensional expression (MDX) queries
for the SSAS dimensional model, and DAX or MDX queries for the SSAS tabular model. To
create the queries and build the Ul properly, the tools rely on standard Star or Snowflake
schemas. The tools expect that the central table, the fact table, is always on the "many” side
of the relationship.

A quick look at Figure 1-13 reveals that the FactinternetSales fact table is on the “one” side
of its relationship with the FactinternetSalesReason fact table. SSAS with a BISM tabular model
does not support many-to-many relationships at all in its current version. In SSAS with a BISM
dimensional model, you can solve the problem by creating an intermediate dimension be-
tween both fact tables. You create it from the primary key of the FactinternetSales table. Let's
call this dimension DimFactinternetSales. Then you put it on the “one” side of the relationships
with both fact tables. This way, both fact tables are always on the “many” side of any relation-
ship. However, you have to realize that the relationship between the FactinternetSales and the
new DimFactinternetSales dimension is de facto one to one.

Lesson 3: Designing Fact Tables

31

32

EXAM TIP

Note that you create an intermediate dimension between two fact tables that supports
SSAS many-to-many relationship from an existing fact table, and not directly from a table
from the source transactional system.

You can generate such intermediate dimensions in your data warehouse and then just
inherit them in your SSAS BISM dimensional database. (Note that SSAS with BISM in a tabular
model does not recognize many-to-many relationships, even with an additional intermedi-
ate dimension table.) This way, you can have the same model in your DW as in your BISM
dimensional database. In addition, when you recreate such a dimension, you can expose it to
end users for reporting. However, a dimension containing key columns only is not very useful
for reporting. To make it more useful, you can add additional attributes that form a hierarchy.
Date variations, such as year, quarter, month, and day are very handy for drilling down. You
can get these values from the DimDate dimension and enable a drill-down path of year —
quarter = month — day — sales order in this dimension. Figure 1-14 shows a many-to-many
relationship with an additional intermediate dimension.

FactInternetSales

J DateKey . FactInternetSalesReason |y
DimFactInternetSales g sekesorderumber

Customerkey I—
SalesOrderhlumbe -
j SlesUrderhiumosr B| SalesCrderlineMumber

9| Salesorderhiumber
_BI SalesOrderLineNumber
_?I SalesOrderLineMumber _?I SalesReasonkey

_I Salesfmaunt

DimSalesReason
ﬂ SalesReasonkey
_l SalesReasonhlame

FIGURE 1-14 A many-to-many relationship with two intermediate tables.

Note that SSMS created the relationship between DimFactinternetSales and Factinternet-
Sales as one to one.

Reviewing the AdventureWorksDW2012 Fact Tables

The AdventureWorksDW2012 sample database has many types of fact tables as well, in order
to show all possible measures. In this practice, you are going to review one of them.
EXERCISE 1 Create a Diagram for an AdventureWorksDW2012 Fact Table

In this exercise, you create a database diagram for a fact table and two associated dimensions.

1. If you closed SSMS, start it and connect to your SQL Server instance. Expand the Data-
bases folder and then the AdventureWorksDW2012 database.

2. Right-click the Database Diagrams folder and select the New Database Diagram option.

3. From the Add Table list, select the following tables (click each table and then click the
Add button):
m DimProduct
® DimDate

m FactProductinventory

Data Warehouse Logical Design

Your diagram should look like Figure 1-15.

DimProduct "I FactProductInventory |- —|LimDate

ﬂ Productkey = J Productkey ﬂ Datekey =
_I Productalternatekey _I Datekey _I FullDatealternatekey
_I ProductSubcategoryke _I UnitCost _I DayMumberOfweek

I WeightUnitMeasureCod| _I UnitsIn _I EnglishDayMameOfwes
_I SizeUnitMeasureCode _I UnitsOut _I SpanishDayhamaOry,
_l EnglishProductiame _l UnitsBalance _l FrenchDayMameOfwes
_I SpanishProductMarme _I DayMumberOFMonth

_I FrenchProductiame _I DayMumberOFear

_I StandardCost _I WeekMumberOfyear

_I FinishedGoodsFlag _I EnglishMonthMarme

_! Color _l—'l _! SpanishMonthName_l_'I
4 | » 4 | »

FIGURE 1-15 FactProductinventory and related tables.

EXERCISE 2 Analyze Fact Table Columns

In this exercise, you learn more details about the fact table in the schema you created in the
previous exercise. Note that you have to conclude these details from the names of the mea-
sure columns; in a real-life project, you should check the content of the columns as well.

= Knowing how an inventory works, you can conclude that the Unitsin and UnitsOut are
additive measures. Using the SUM aggregate function for these two columns is reason-
able for aggregations over any dimension.

m The UnitCost measure is a non-additive measure. Summing it over any dimension does
not make sense.

m The UnitsBalance measure is a semi-additive measure. You can use the SUM aggregate
function over any dimension but time.

Save the diagram using the name Practice_01_03_Productinventory. Close the diagram
and exit SSMS.

Lesson Summary

m Fact tables include measures, foreign keys, and possibly an additional primary key and
lineage columns.

m Measures can be additive, non-additive, or semi-additive.

m For many-to-many relationships, you can introduce an additional intermediate
dimension.

Lesson 3: Designing Fact Tables

33

34

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1. Over which dimension can you not use the SUM aggregate function for semi-additive
measures?

A. Customer

B. Product
C. Date
D. Employee

2. Which measures would you expect to be non-additive? (Choose all that apply.)
A. Price
B. Debit
C. SalesAmount
D. DiscountPct
E. UnitBalance
3. Which kind of a column is not part of a fact table?
A. Lineage
B. Measure
C. Key
D. Member property

Case Scenarios

In the following case scenarios, you apply what you've learned about Star and Snowflake
schemas, dimensions, and the additivity of measures. You can find the answers to these ques-
tions in the "Answers” section at the end of this chapter.

Case Scenario 1: A Quick POC Project

You are hired to implement a quick POC data warehousing project. You have to prepare the
schema for sales data. Your customer’s SME would like to analyze sales data over customers,
products, and time. Before creating a DW and tables, you need to make a couple of decisions
and answer a couple of questions:

Data Warehouse Logical Design

1. What kind of schema would you use?
2. What would the dimensions of your schema be?

3. Do you expect additive measures only?

Case Scenario 2: Extending the POC Project

After you implemented the POC sales data warehouse in Case Scenario 1, your customer
was very satisfied. In fact, the business would like to extend the project to a real, long-term
data warehouse. However, when interviewing analysts, you also discovered some points of
dissatisfaction.

Interviews

Here's a list of company personnel who expressed some dissatisfaction during their inter-
views, along with their statements:

m Sales SME "l don't see correct aggregates over regions for historical data.”
= DBA Who Creates Reports "My queries are still complicated, with many joins.”

You need to solve these issues.

Questions
1. How would you address the Sales SME issue?
2. What kind of schema would you implement for a long-term DW?

3. How would you address the DBA's issue?

Suggested Practices

To help you successfully master the exam objectives presented in this chapter, complete the
following tasks.

Analyze the AdventureWorksDW2012 Database
Thoroughly

To understand all kind of dimensions and fact tables, you should analyze the Adventure-
WorksDW2012 sample database thoroughly. There are cases for many data warehousing
problems you might encounter.

m Practicel Check all fact tables. Find all semi-additive measures.

m Practice 2 Find all hierarchies possible for the DimCustomer dimension. Include
attributes in the dimension and attributes in the lookup DimGeography table.

Suggested Practices 35

36

Check the SCD and Lineage in the
AdventureWorksDW2012 Database

Although the AdventureWorksDW2012 database exemplifies many cases for data warehousing,
not all possible problems are covered. You should check for what is missing.
m Practice 1 |[s there room for lineage information in all dimensions and fact tables?
How would you accommodate this information?
m Practice 2 Are there some important dimensions, such as those representing cus-
tomers and products, that are not prepared for a Type 2 SCD solution? How would you
prepare those dimensions for a Type 2 SCD solution?

Data Warehouse Logical Design

Answers

This section contains answers to the lesson review questions and solutions to the case sce-
narios in this chapter.

Lesson 1

1. Correct Answers: A and D

Correct: A Star schema typically has fewer tables than a normalized schema.

Incorrect: The support for data types depends on the database management
system, not on the schema.

Incorrect: There are no specific Transact-SQL expressions or commands for Star
schemas. However, there are some specific optimizations for Star schema queries.

Correct: The Star schema is a de facto standard for data warehouses. It is narrative;
the central table—the fact table—holds the measures, and the surrounding tables,
the dimensions, give context to those measures.

2. Correct Answer: C

A.

Incorrect: The Star schema is more suitable for long-term DW projects.
Incorrect: A normalized schema is appropriate for OLTP LOB applications.

Correct: A Snowflake schema is appropriate for POC projects, because dimensions
are normalized and thus closer to source normalized schema.

Incorrect: An XML schema is used for validating XML documents, not for a DW.

3. Correct Answers: Band D

A. Incorrect: Lookup tables are involved in both Snowflake and normalized schemas.
B. Correct: Dimensions are part of a Star schema.
C. Incorrect: Measures are columns in a fact table, not tables by themselves.
D. Correct: A fact table is the central table of a Star schema.
Lesson 2
1. Correct Answer: B
A. Incorrect: This is Type 3 SCD management.
B. Correct: This is how you handle changes when you implement a Type 2 SCD
solution.
C. Incorrect: Maintaining history does not mean that the content of a DW is static.
D. Incorrect: This is Type 1 SCD management.

Answers 37

2. Correct Answer: B

A.
B.

Incorrect: Attributes are part of dimensions.

Correct: Measures are part of fact tables.

Incorrect: Keys are part of dimensions.

Incorrect: Member properties are part of dimensions.

Incorrect: Name columns are part of dimensions.

3. Correct Answer: B

A. Incorrect: You need to analyze the attribute names and content in order to spot
the hierarchies in a Star schema.

B. Correct: Lookup tables for dimensions denote natural hierarchies in a Snowflake
schema.

C. Incorrect: A Snowflake schema supports hierarchies.

D. Incorrect: You do not need to convert a Snowflake to a Star schema to spot the
hierarchies.

Lesson 3
1. Correct Answer: C

A. Incorrect: You can use SUM aggregate functions for semi-additive measures over
the Customer dimension.

B. Incorrect: You can use SUM aggregate functions for semi-additive measures over
the Product dimension.

C. Correct: You cannot use SUM aggregate functions for semi-additive measures
over the Date dimension.

D. Incorrect: You can use SUM aggregate functions for semi-additive measures over

the Employee dimension.

2. Correct Answers: A and D

A.
B.

38

Correct: Prices are not additive measures.

Incorrect: Debit is an additive measure.

Incorrect: Amounts are additive measures.

Correct: Discount percentages are not additive measures.

Incorrect: Balances are semi-additive measures.

Data Warehouse Logical Design

3. Correct Answer: D
A. Incorrect: Lineage columns can be part of a fact table.
B. Incorrect: Measures are included in a fact table.
C. Incorrect: A fact table includes key columns.

D. Correct: Member property is a type of column in a dimension.

Case Scenario 1

1. Foraquick POC project, you should use the Snowflake schema.
2. You would have customer, product, and date dimensions.

3. No, you should expect some non-additive measures as well. For example, prices and
various percentages, such as discount percentage, are non-additive.

Case Scenario 2

1. You should implement a Type 2 solution for the slowly changing customer dimension.

2. For along-term DW, you should choose a Star schema.

3. With Star schema design, you would address the DBA's issue automatically.

Answers

39

Implementing a Data
Warehouse

Exam objectives in this chapter:
m Design and Implement a Data Warehouse
m Design and implement dimensions.

m Design and implement fact tables.

fter learning about the logical configuration of a data warehouse schema, you need to

use that knowledge in practice. Creating dimensions and fact tables is simple. How-
ever, using proper indexes and partitioning can make the physical implementation quite
complex. This chapter discusses index usage, including the new Microsoft SQL Server 2012
columnstore indexes. You will also learn how to use table partitioning to improve query per-
formance and make tables and indexes more manageable. You can speed up queries with
pre-prepared aggregations by using indexed views. If you use your data warehouse for que-
rying, and not just as a source for SQL Server Analysis Services (SSAS) Business Intelligence
Semantic Model (BISM) models, you can create aggregates when loading the data. You can
store aggregates in additional tables, or you can create indexed views. In this chapter, you
will learn how to implement a data warehouse and prepare it for fast loading and querying.

Lessons in this chapter:
m Lesson 1: Implementing Dimensions and Fact Tables
m Lesson 2: Managing the Performance of a Data Warehouse

m Lesson 3: Loading and Auditing Loads

41

42

Before You Begin

To complete this chapter, you must have:
®m An understanding of dimensional design.
m Experience working with SQL Server 2012 Management Studio.
m A working knowledge of the Transact-SQL (T-SQL) language.
®m An understanding of clustered and nonclustered indexes.

m A solid grasp of nested loop joins, merge joins, and hash joins.

Lesson 1: Implementing Dimensions and Fact Tables

Implementing a data warehouse means creating the data warehouse (DW) database and
database objects. The main database objects, as you saw in Chapter 1, “Data Warehouse
Logical Design,” are dimensions and fact tables. To expedite your extract-transform-load (ETL)
process, you can have additional objects in your DW, including sequences, stored procedures,
and staging tables. After you create the objects, you should test them by loading test data.

After this lesson, you will be able to:
m Create a data warehouse database.
m Create sequences.
m Implement dimensions.

m Implement fact tables.

Estimated lesson time: 50 minutes

Creating a Data Warehouse Database

You should consider a couple of settings when creating a data warehouse database. A DW
contains a transformed copy of line-of-business (LOB) data. You load data to your DW oc-
casionally, on a schedule—typically in an overnight job. The DW data is not online, real-time
data. You do not need to back up the transaction log for your data warehouse, as you would in
an LOB database. Therefore, the recovery model for your data warehouse should be Simple.

Implementing a Data Warehouse

-,

SQL Server supports three recovery models:

m In the Full recovery model, all transactions are fully logged, with all associated data. You
have to regularly back up the log. You can recover data to any arbitrary point in time.
Point-in-time recovery is particularly useful when human errors occur.

m The Bulk Logged recovery model is an adjunct of the Full recovery model that permits
high-performance bulk copy operations. Bulk operations, such as index creation or
bulk loading of text or XML data, can be minimally logged. For such operations, SQL
Server can log only the Transact-SQL command, without all the associated data. You
still need to back up the transaction log regularly.

m In the Simple recovery model, SQL Server automatically reclaims log space for commit-
ted transactions. SQL Server keeps log space requirements small, essentially eliminat-
ing the need to manage the transaction log space.

The Simple recovery model is useful for development, test, and read-mostly databases.
Because in a data warehouse you use data primarily in read-only mode, the Simple model is
the most appropriate for a data warehouse. If you use Full or Bulk Logged recovery models,
you should back up the log regularly, because the log will otherwise constantly grow with
each new data load.

SQL Server database data and log files can grow and shrink automatically. However, grow-
ing happens at the most inappropriate time—when you load new data—interfering with your
load, and thus slowing down the load. Numerous small-growth operations can fragment your
data. Automatic shrinking can fragment the data even more. For queries that read a lot of
data, performing large table scans, you will want to eliminate fragmentation as much as pos-
sible. Therefore, you should prevent autoshrinking and autogrowing. Make sure that the Auto
Shrink database option is turned off. Though you can’t prevent the database from growing,
you should reserve sufficient space for your data and log files initially to prevent autogrowth.

You can calculate space requirements quite easily. A data warehouse contains data for
multiple years, typically for 5 or 10 years. Load test data for a limited period, such as a year
(or a month, if you are dealing with very large source databases). Then check the size of your
database files and extrapolate the size to the complete 5 or 10 years’ worth of data. In addi-
tion, you should add at least 25 percent for extra free space in your data files. This additional
free space lets you rebuild or re-create indexes without fragmentation.

Although the transaction log does not grow in the Simple recovery model, you should still
set it to be large enough to accommodate the biggest transaction. Regular data modifica-
tion language (DML) statements, including INSERT, DELETE, UPDATE, and MERGE, are always
fully logged, even in the Simple model. You should test the execution of these statements and
estimate an appropriate size for your log.

Lesson 1: Implementing Dimensions and Fact Tables

43

In your data warehouse, large fact tables typically occupy most of the space. You can
/‘ optimize querying and managing large fact tables through partitioning. Table partitioning
has management advantages and provides performance benefits. Queries often touch only
subsets of partitions, and SQL Server can efficiently eliminate other partitions early in the
query execution process. You will learn more about fact table partitioning in Lesson 3 of this
chapter.

' / A database can have multiple data files, grouped in multiple filegroups. There is no single
best practice as to how many filegroups you should create for your data warehouse. How-
ever, for most DW scenarios, having one filegroup for each partition is the most appropriate.
For the number of files in a filegroup, you should consider your disk storage. Generally, you
should create one file per physical disk.

MORE INFO DATA WAREHOUSE DATABASE FILEGROUPS

For more information on filegroups, see the document “Creating New Data Ware-
house Filegroups” at http://msdn.microsoft.com/en-us/library/ee796978(CS.20).aspx.
For more information on creating large databases, see the SQL Server Customer Advi-
sory Team (SQLCAT) white paper “Top 10 Best Practices for Building a Large Scale Re-
lational Data Warehouse” at http://sqlcat.com/sqlcat/b/top10lists/archive/2008/02/06
/top-10-best-practices-for-building-a-large-scale-relational-data-warehouse.aspx. For
more information on data loading performance, see the SQLCAT white paper, “The
Data Loading Performance Guide” at http://msdn.microsoft.com/en-us/library
/dd425070(SQL.100).aspx.

Loading data from source systems is often quite complex. To mitigate the complexity,
you can implement staging tables in your DW. You can even implement staging tables and
' / other objects in a separate database. You use staging tables to temporarily store source data
before cleansing it or merging it with data from other sources. In addition, staging tables also
serve as an intermediate layer between DW and source tables. If something changes in the
source—for example if a source database is upgraded—you have to change only the query
that reads source data and loads it to staging tables. After that, your regular ETL process
should work just as it did before the change in the source system. The part of a DW contain-
ing staging tables is called the data staging area (DSA).

REAL WORLD DATA STAGING AREA

In the vast majority of data warehousing projects, an explicit data staging area adds a lot
of flexibility in ETL processes.

Staging tables are never exposed to end users. If they are part of your DW, you can store
them in a different schema than regular Star schema tables. By storing staging tables in a
different schema, you can give permissions to end users on the regular DW tables by assign-
ing those permissions for the appropriate schema only, which simplifies administration. In a

Implementing a Data Warehouse

http://sqlcat.com/sqlcat/b/top10lists/archive/2008/02/06 /top-10-best-practices-for-building-a-large-scale-relational-data-warehouse.aspx
http://sqlcat.com/sqlcat/b/top10lists/archive/2008/02/06 /top-10-best-practices-for-building-a-large-scale-relational-data-warehouse.aspx
http://msdn.microsoft.com/en-us/library/dd425070(SQL.100).aspx
http://msdn.microsoft.com/en-us/library/dd425070(SQL.100).aspx

typical data warehouse, two schemas are sufficient: one for regular DW tables, and one for
staging tables. You can store regular DW tables in the dbo schema and, if needed, create a
separate schema for staging tables.

Implementing Dimensions

Implementing a dimension involves creating a table that contains all the needed columns. In
addition to business keys, you should add a surrogate key to all dimensions that need Type 2
Slowly Changing Dimension (SCD) management. You should also add a column that flags the
current row or two date columns that mark the validity period of a row when you implement
Type 2 SCD management for a dimension.

You can use simple sequential integers for surrogate keys. SQL Server can autonumber
them for you. You can use the IDENTITY property to generate sequential numbers. You
should already be familiar with this property. In SQL Server 2012, you can also use sequences
for identifiers.

A sequence is a user-defined, table-independent (and therefore schema-bound) object.
SQL Server uses sequences to generate a sequence of numeric values according to your speci-
fication. You can generate sequences in ascending or descending order, using a defined in-
terval of possible values. You can even generate sequences that cycle (repeat). As mentioned,
sequences are independent objects, not associated with tables. You control the relationship
between sequences and tables in your ETL application. With sequences, you can coordinate
the key values across multiple tables.

You should use sequences instead of identity columns in the following scenarios:
® When you need to determine the next number before making an insert into a table.

®m When you want to share a single series of numbers between multiple tables, or even
between multiple columns within a single table.

m When you need to restart the number series when a specified number is reached (that
is, when you need to cycle the sequence).

= When you need sequence values sorted by another column. The NEXT VALUE FOR
function, which is the function you call to allocate the sequence values, can apply
the OVER clause. In the OVER clause, you can generate the sequence in the order
of the OVER clause’s ORDER BY clause.

m When you need to assign multiple numbers at the same time. Requesting identity
values could result in gaps in the series if other users were simultaneously generating
sequential numbers. You can call the sp_sequence_get_range system procedure to
retrieve several numbers in the sequence at once.

m When you need to change the specification of the sequence, such as the increment
value.

Lesson 1: Implementing Dimensions and Fact Tables

45

46

o)

= When you need to achieve better performance than with identity columns. You can
use the CACHE option when you create a sequence. This option increases performance
by minimizing the number of disk 10s that are required to generate sequence num-
bers. When the cache size is 50 (which is the default cache size), SQL Server caches
only the current value and the number of values left in the cache, meaning that the
amount of memory required is equivalent to only two instances of the data type for
the sequence object.

The complete syntax for creating a sequence is as follows.

CREATE SEQUENCE [schema_name .] sequence_name
[AS [built_in_integer_type | user-defined_integer_type]]
[START WITH <constant>]
[INCREMENT BY <constant>]
[{ MINVALUE [<constant> 1 } | { NO MINVALUE }]
[{ MAXVALUE [<constant> 1 } | { NO MAXVALUE }]
[CYCLE | { NO CYCLE }]
[{ CACHE [<constant>] } | { NO CACHE }]
[51
In addition to regular columns, you can also add computed columns. A computed column
is a virtual column in a table. The value of the column is determined by an expression. By
defining computed columns in your tables, you can simplify queries. Computed columns can
also help with performance. You can persist and index a computed column, as long as the
following prerequisites are met:

® Ownership requirements
= Determinism requirements
m Precision requirements

m Data type requirements

= SET option requirements

Refer to the article “Creating Indexes on Computed Columns” in Books Online for SQL
Server 2012 for details of these requirements (http.//msdn.microsoft.com/en-us/library
/ms189292(SQL.105).aspx).

You can use computed columns to discretize continuous values in source columns. Com-
puted columns are especially useful for column values that are constantly changing. An ex-
ample of an ever-changing value would be age. Assume that you have the birth dates of your
customers or employees; for analyses, you might need to calculate the age. The age changes
every day, with every load. You can discretize age in a couple of groups. Then the values
do not change so frequently anymore. In addition, you do not need to persist and index a
computed column. If the column is not persisted, SQL Server calculates the value on the fly,
when a query needs it. If you are using SQL Server Analysis Services (SSAS), you can store this
column physically in an SSAS database and thus persist it in SSAS.

Finally, if you need lineage information, you should include lineage columns in your dimen-
sions as well.

Implementing a Data Warehouse

http://msdn.microsoft.com/en-us/library/ms189292(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ms189292(SQL.105).aspx

(Quick Check

m How can SQL Server help you with values for your surrogate keys?

Quick Check Answer

m SQL Server can autonumber your surrogate keys. You can use the IDENTITY prop-
erty or sequence objects.

Implementing Fact Tables

After you implement dimensions, you need to implement fact tables in your data warehouse.
You should always implement fact tables after you implement your dimensions. A fact table
is on the “many” side of a relationship with a dimension, so the parent side must exist if you
want to create a foreign key constraint.

You should partition a large fact table for easier maintenance and better performance. You
will learn more about table partitioning in Lesson 3 of this chapter.

Columns in a fact table include foreign keys and measures. Dimensions in your database
define the foreign keys. All foreign keys together usually uniquely identify each row of a fact
table. If they do uniquely identify each row, then you can use them as a composite key. You
can also add an additional surrogate primary key, which might also be a key inherited from
an LOB system table. For example, if you start building your DW sales fact table from an LOB
sales order details table, you can use the LOB sales order details table key for the DW sales
fact table as well.

EXAM TIP

It is not necessary that all foreign keys together uniquely identify each row of a fact table.

In production, you can remove foreign key constraints to achieve better load performance.
If the foreign key constraints are present, SQL Server has to check them during the load. How-
ever, we recommend that you retain the foreign key constraints during the development and
testing phases. It is easier to create database diagrams if you have foreign keys defined. In
addition, during the tests, you will get errors if constraints are violated. Errors inform you that
there is something wrong with your data; when a foreign key violation occurs, it's most likely
that the parent row from a dimension is missing for one or more rows in a fact table. These
types of errors give you information about the quality of the data you are dealing with.

If you decide to remove foreign keys in production, you should create your ETL process
so that it's resilient when foreign key errors occur. In your ETL process, you should add a row
to a dimension when an unknown key appears in a fact table. A row in a dimension added
during fact table load is called an inferred member. Except for the key values, all other column
values for an inferred member row in a dimension are unknown at fact table load time, and

Lesson 1: Implementing Dimensions and Fact Tables

47

48

you should set them to NULL. This means that dimension columns (except keys) should allow
NULLs. The SQL Server Integration Services (SSIS) SCD wizard helps you handle inferred mem-
bers at dimension load time. The inferred members problem is also known as the /ate-arriving
dimensions problem.

Like dimensions, fact tables can also contain computed columns. You can create many
computations in advance and thus simplify queries. And, of course, also like dimensions, fact
tables can have lineage columns added to them if you need them.

Implementing Dimensions and Fact Tables

In this practice, you will implement a data warehouse. You will use the AdventureWorksDW2012
sample database as the source for your data. You are not going to create an explicit data
staging area; you are going to use the AdventureWorksDW2012 sample database as your
data staging area.

If you encounter a problem completing an exercise, you can install the completed projects
from the Solution folder that is provided with the companion content for this chapter and
lesson.

EXERCISE 1 Create a Data Warehouse Database and a Sequence

In the first exercise, you will create a SQL Server database for your data warehouse.

1. Start SSMS and connect to your SQL Server instance. Open a new query window by
clicking the New Query button.

2. From the context of the master database, create a new database called TK463DW.
Before creating the database, check whether it exists, and drop it if needed. You should
always check whether an object exists and drop it if needed. The database should have
the following properties:

m It should have a single data file and a single log file in the TK463 folder. You can cre-
ate this folder in any drive you want.

m The data file should have an initial size of 300 MB and be autogrowth enabled in
10MB chunks.

m The log file size should be 50 MB, with 10-percent autogrowth chunks.

3. After you create the database, change the recovery model to Simple. Here is the com-
plete database creation code.

USE master;
IF DB_ID('TK463DW') IS NOT NULL
DROP DATABASE TK463DW;
GO
CREATE DATABASE TK463DW
ON PRIMARY
(NAME = N'TK463DW', FILENAME = N'C:\TK463\TK463DW.mdf",
SIZE = 307200KB , FILEGROWTH = 10240KB)

Implementing a Data Warehouse

LOG ON
(NAME = N'TK463DW_log', FILENAME = N'C:\TK463\TK463DW_Tlog.1df",
SIZE = 51200KB , FILEGROWTH = 10%);
GO
ALTER DATABASE TK463DW SET RECOVERY SIMPLE WITH NO_WAIT;
GO

In your new data warehouse, create a sequence object. Name it SeqCustomerDwKey.
Start numbering with 1, and use an increment of 1. For other sequence options, use
the SQL Server defaults. You can use the following code.

USE TK463DW;

GO

IF OBJECT_ID('dbo.SeqCustomerDwKey','S0') IS NOT NULL
DROP SEQUENCE dbo.SeqCustomerDwKey ;

GO

CREATE SEQUENCE dbo.SeqCustomerDwKey AS INT

START WITH 1

INCREMENT BY 1;

GO

EXERCISE 2 Create Dimensions

In this exercise, you will create the Customers dimension, for which you will have to
implement quite a lot of knowledge learned from this and the previous chapter. In the
AdventureWorksDW2012 database, the DimCustomer dimension, which will serve as the
source for your Customers dimension, is partially snowflaked. It has a one-level lookup
table called DimGeography. You will fully denormalize this dimension. In addition, you are
going to add the columns needed to support an SCD Type 2 dimension and a couple of
computed columns. In addition to the Customers dimension, you are going to create the
Products and Dates dimensions.

1.

Create the Customers dimension. The source for this dimension is the DimCustomer
dimension from the AdventureWorksDW2012 sample database. Add a surrogate key
column called CustomerDwKey, and create a primary key constraint on this column.
Use Table 2-1 for the information needed to define the columns of the table and to
populate the table.

TABLE 2-1 Column Information for the Customers Dimension

Column name Data type Nullability Remarks

CustomerDwKey | INT NOT NULL Surrogate key; assign values with a
sequence

CustomerKey INT NOT NULL

FullName NVARCHAR(150) NULL Concatenate FirstName and LastName
from DimCustomer

EmailAddress NVARCHAR(50) NULL

Lesson 1: Implementing Dimensions and Fact Tables 49

50

2.

Column name Data type Nullability Remarks
BirthDate DATE NULL
MaritalStatus NCHAR(1) NULL
Gender NCHAR(1) NULL
Education NVARCHAR(40) NULL EnglishEducation from DimCustomer
Occupation NVARCHAR(100) NULL EnglishOccupation from DimCustomer
City NVARCHAR(30) NULL City from DimGeography
StateProvince NVARCHAR(50) NULL StateProvinceName from
DimGeography
CountryRegion NVARCHAR(50) NULL EnglishCountryRegionName from
DimGeography
Age Inherited Inherited Computed column. Calculate the dif-
ference in years between BirthDate
and the current date, and discretize it
in three groups:
B When difference <= 40, label
"Younger”
B When difference > 50, label
"Older”
B Else label "Middle Age”
CurrentFlag BIT NOT NULL Default 1

NOTE HOW TO INTERPRET THE REMARKS COLUMN IN TABLE 2-1

For columns for which the Remarks column in Table 2-1 is empty, populate the column

with values from a column with the same name in the AdventureWorksDW2012 source

dimension (in this case, DimCustomer); when the Remarks column is not empty, you can

find information about how to populate the column values from a column with a dif-

ferent name in the AdventureWorksDW2012 source dimension, or with a column from

a related table, with a default constraint, or with an expression. You will populate all

dimensions in the practice for Lesson 2 of this chapter.

Your code for creating the Customers dimension should be similar to the code in the
following listing.

CREATE TABLE dbo.Customers

(

CustomerDwKey INT

CustomerKey
FulTName
EmailAddress
BirthDate

INT

NVARCHAR (150)
NVARCHAR (50)
DATE

MaritalStatus NCHAR(1)

NOT NULL,
NOT NULL,
NULL,
NULL,
NULL,
NULL,

Implementing a Data Warehouse

Gender NCHAR (1) NULL,

Education NVARCHAR(40) NULL,
Occupation NVARCHAR (100) NULL,
City NVARCHAR(30) NULL,

StateProvince NVARCHAR(50) NULL,
CountryRegion NVARCHAR(50) NULL,
Age AS
CASE
WHEN DATEDIFF(yy, BirthDate, CURRENT_TIMESTAMP) <= 40
THEN 'Younger'
WHEN DATEDIFF(yy, BirthDate, CURRENT_TIMESTAMP) > 50

THEN 'Older’

ELSE 'Middle Age'

END,
CurrentFlag BIT NOT NULL DEFAULT 1,
CONSTRAINT PK_Customers PRIMARY KEY (CustomerDwKey)
N
GO

Create the Products dimension. The source for this dimension is the DimProducts
dimension from the AdventureWorksDW2012 sample database. Use Table 2-2 for the
information you need to create and populate this table.

TABLE 2-2 Column Information for the Products Dimension

Column name Data type Nullability Remarks

ProductKey INT NOT NULL

ProductName NVARCHAR(50) NULL EnglishProductName from DimProduct

Color NVARCHAR(15) NULL

Size NVARCHAR(50) NULL

SubcategoryName NVARCHAR(50) NULL EnglishProductSubcategoryName from
DimProductSubcategory

CategoryName NVARCHAR(50) NULL EnglishProductCategoryName from
DimProductCategory

Your code for creating the Products dimension should be similar to the code in the fol-
lowing listing.

CREATE TABLE dbo.Products

(

ProductKey INT NOT NULL,
ProductName NVARCHAR(50) NULL,
Color NVARCHAR(15) NULL,
Size NVARCHAR(50) NULL,

SubcategoryName NVARCHAR(50) NULL,
CategoryName NVARCHAR(50) NULL,

CONSTRAINT PK_Products PRIMARY KEY (ProductKey)
H

GO

Lesson 1: Implementing Dimensions and Fact Tables

51

52

Create the Dates dimension. The source for this dimension is the DimDate dimension
from the AdventureWorksDW2012 sample database. Use Table 2-3 for the information
you need to create and populate this table.

TABLE 2-3 Column Information for the Dates Dimension

Column name Data type Nullability Remarks

DateKey INT NOT NULL

FullDate DATE NOT NULL FullDateAlternateKey from DimDate
MonthNumberName NVARCHAR(15) | NULL Concatenate MonthNumberOfYear

(with leading zeroes when the
number is less than 10) and
EnglishMonthName from DimDate

CalendarQuarter TINYINT NULL

CalendarYear SMALLINT NULL

Your code for creating the Dates dimension should be similar to the code in the follow-
ing listing.

CREATE TABLE dbo.Dates

(

DateKey INT NOT NULL,
FullDate DATE NOT NULL,
MonthNumberName NVARCHAR(15) NULL,
CalendarQuarter TINYINT NULL,
CalendarYear SMALLINT NULL,
CONSTRAINT PK_Dates PRIMARY KEY (DateKey)
)3

GO

EXERCISE 3 Create a Fact Table

In this simplified example of a real data warehouse, you are going to create a single fact table.
In this example, you cannot use all foreign keys together as a composite primary key, because
the source for this table—the FactinternatSales table from the AdventureWorksDW2012 data-
base—has lower granularity than the fact table you are creating, and the primary key would
be duplicated. You could use the SalesOrderNumber and SalesOrderLineNumber columns as
the primary key, as in a source table; however, in order to show how you can autonumber a
column with the IDENTITY property, this exercise has you add your own integer column with
this property. This will be your surrogate key.

1.

Create the InternetSales fact table. The source for this fact table is the FactinternetSales
fact table from the AdventureWorksDW2012 sample database. Add foreign keys from
the three dimensions created in Exercise 2 of this lesson. Add an integer column by
using the IDENTITY property, and use it as the primary key. Use Table 2-4 for the infor-
mation needed to define the columns of the table.

Implementing a Data Warehouse

TABLE 2-4 Column Information for the InternetSales Fact Table

Column name Data type | Nullability Remarks
InternetSalesKey INT NOT NULL IDENTITY(1,1)
CustomerDwKey | INT NOT NULL Using the CustomerKey business key from the

Customers dimension, find the appropriate
value of the CustomerDwKey surrogate key
from the Customers dimension

ProductKey INT NOT NULL

DateKey INT NOT NULL OrderDateKey from FactinternetSales
OrderQuantity SMALLINT | NOT NULL Default 0

SalesAmount MONEY NOT NULL Default 0

UnitPrice MONEY NOT NULL Default 0

DiscountAmount | FLOAT NOT NULL Default 0

Your code for creating the InternetSales fact table should be similar to the code in the
following listing.

CREATE TABLE dbo.InternetSales

(

InternetSalesKey INT NOT NULL IDENTITY(1,1),
CustomerDwKey INT NOT NULL,

ProductKey INT NOT NULL,

DateKey INT NOT NULL,
OrderQuantity SMALLINT NOT NULL DEFAULT O,
SalesAmount MONEY NOT NULL DEFAULT O,
UnitPrice MONEY NOT NULL DEFAULT O,

DiscountAmount FLOAT NOT NULL DEFAULT O,
CONSTRAINT PK_InternetSales
PRIMARY KEY (InternetSalesKey)
);
GO

Alter the InternetSales fact table to add foreign key constraints for relationships with all
three dimensions. The code is shown in the following listing.

ALTER TABLE dbo.InternetSales ADD CONSTRAINT
FK_InternetSales_Customers FOREIGN KEY(CustomerDwKey)
REFERENCES dbo.Customers (CustomerDwKey) ;

ALTER TABLE dbo.InternetSales ADD CONSTRAINT
FK_InternetSales_Products FOREIGN KEY(ProductKey)
REFERENCES dbo.Products (ProductKey);

ALTER TABLE dbo.InternetSales ADD CONSTRAINT
FK_InternetSales_Dates FOREIGN KEY(DateKey)
REFERENCES dbo.Dates (DateKey);

GO

Lesson 1: Implementing Dimensions and Fact Tables

54

3. Create a database diagram, as shown in Figure 2-1. Name it InternetSalesDW and

save It
Customers InternetSales Products
ﬂ CustomerDwikey o - ﬂ CustomerDwiey ﬂ Productkey
J Customerkey _?I Productkey e — _I ProductMame
J FullMame jl Datekey J Colar
J EmailAddress _I OrderQuantity _I Size
J BirthDate _I SalezAmount _I SubcategoryName
J MaritalStatus _I UnitPrice _I CategoryName
| Gender _I DiscountAmourt
Education
: Occupation 8
- City
| StateProvince
| CountryRegion
| Age
| CurrentFlag Dates
ﬂ Datekey
| Fulpate

_I MonthNumberhame
_I Calendaruarter

_I CalendarYear

FIGURE 2-1 The schema of the simplified practice data warehouse.

4. Save the file with the T-SQL code.

NOTE CONTINUING WITH PRACTICES

Do not exit SSMS if you intend to continue immediately with the next practice.

Lesson Summary
m In this lesson, you learned about implementing a data warehouse.
m For a data warehouse database, you should use the Simple recovery model.

m When creating a database, allocate enough space for data files and log files to prevent
autogrowth of the files.

m Use surrogate keys in dimensions in which you expect SCD Type 2 changes.

m Use computed columns.

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
orincorrect in the “Answers” section at the end of this chapter.

Implementing a Data Warehouse

1. Which database objects and object properties can you use for autonumbering?
(Choose all that apply.)

A. |DENTITY property
B. SEQUENCE object
C. PRIMARY KEY constraint
D. CHECK constraint
2. What columns do you add to a table to support Type 2 SCD changes? (Choose all that
apply.)
A. Member properties
B. Current row flag
C. Lineage columns

D. Surrogate key

3. Whatis an inferred member?
A. Arow in a fact table added during dimension load
B. A row with aggregated values
C. Arow in a dimension added during fact table load

D. A computed column in a fact table

Lesson 2: Managing the Performance of a
Data Warehouse

Implementing a Star schema by creating tables is quite simple. However, when a data ware-
house is in production, more complex problems appear. Data warehouses are often very
large, so you are likely to have to deal with performance problems. In this lesson, you will
learn how to index DW tables appropriately, use data compression, and create columnstore
indexes. In addition, this lesson briefly tackles some T-SQL queries typical for a data ware-
housing environment.

After this lesson, you will be able to:
m Use clustered and nonclustered indexes on a dimension and on a fact table.
m Use data compression.
m Use appropriate T-SQL queries.

m Use indexed views.

Estimated lesson time: 60 minutes

Lesson 2: Managing the Performance of a Data Warehouse

55

56

Indexing Dimensions and Fact Tables

SQL Server stores a table as a heap or as a balanced tree (B-tree). If you create a clustered in-
dex, a table is stored as a B-tree. As a general best practice, you should store every table with
a clustered index, because storing a table as a B-tree has many advantages, as listed here:

®m You can control table fragmentation with the ALTER INDEX command, by using the
REBUILD or REORGANIZE option.

m A clustered index is useful for range queries, because the data is logically sorted on
the key.

®m You can move a table to another filegroup by recreating the clustered index on a dif-
ferent filegroup. You do not have to drop the table, as you would to move a heap.

m A clustering key is a part of all nonclustered indexes. If a table is stored as a heap, then
the row identifier is stored in nonclustered indexes instead. A short, integer clustering
key is shorter than a row identifier, thus making nonclustered indexes more efficient.

m You cannot refer to a row identifier in queries, but clustering keys are often part of
queries. This raises the probability for covered queries. Covered queries are queries that
read all data from one or more nonclustered indexes, without going to the base table.
This means that there are fewer reads and less disk 10.

Clustered indexes are particularly efficient when the clustering key is short. Creating a
clustering index with a long key makes all nonclustered indexes less efficient. In addition, the
clustering key should be unique. If it is not unique, SQL Server makes it unique by adding a
4-byte sequential number called a uniquifier to duplicate keys. This makes keys longer and
all indexes less efficient. Clustering keys should also be ever-increasing. With ever-increasing
keys, minimally logged bulk inserts are possible even if a table already contains data, as long
as the table does not have additional nonclustered indexes.

Data warehouse surrogate keys are ideal for clustered indexes. Because you are the one

who defines them, you can define them as efficiently as possible. Use integers with autonum-
bering options. The Primary Key constraint creates a clustered index by default.

EXAM TIP

Opt for an integer autonumbering surrogate key as the clustered primary key for all DW
tables, unless there is a really strong reason to decide otherwise.

Data warehouse queries typically involve large scans of data and aggregation. Very selec-
tive seeks are not common for reports from a DW. Therefore, nonclustered indexes generally
don't help DW queries much. However, this does not mean that you shouldn't create any
nonclustered indexes in your DW.

Implementing a Data Warehouse

An attribute of a dimension is not a good candidate for a nonclustered index key. Attri-
butes are used for pivoting and typically contain only a few distinct values. Therefore, queries
that filter over attribute values are usually not very selective. Nonclustered indexes on dimen-
sion attributes are not a good practice.

DW reports can be parameterized. For example, a DW report could show sales for all cus-
tomers, or for only a single customer, based perhaps on parameter selection by an end user.
For a single-customer report, the user would choose the customer by selecting that custom-
er's name. Customer names are selective, meaning that you retrieve only a small number of
rows when you filter by customer name. Company names, for example, are typically unique,
so when you filter on a company name you typically retrieve a single row. For reports like this,
having a nonclustered index on a name column or columns could lead to better performance.
Instead of selecting a customer by name, selection by, for example, email address could be
enabled in a report. In that case, a nonclustered index on an email address column could be
useful. An email address in a dimension is a member property in DW terminology, as you saw
in Chapter 1. In contrast to attributes, name columns and member properties could be candi-
dates for nonclustered index keys; however, you should create indexes only if these columns
are used in report queries.

You can create a filtered nonclustered index. A filtered index spans a subset of column
values only, and thus applies to a subset of table rows. Filtered nonclustered indexes are use-
ful when some values in a column occur rarely, whereas other values occur frequently. In such
cases, you would create a filtered index over the rare values only. SQL Server uses this index
for seeks of rare values but performs scans for frequent values. Filtered nonclustered indexes
can be useful not only for name columns and member properties, but also for attributes of a
dimension.

IMPORTANT MINIMIZE USAGE OF NONCLUSTERED INDEXES IN A DW

Analyze the need for every single nonclustered index in a DW thoroughly. Never create a
nonclustered index in a DW without a good reason.

DW queries involve joins between dimensions and a fact table. Most DW joins use the
dimension primary key—the fact table foreign key relationships. SQL Server has a special star
join optimization of hash joins for DW queries. SQL Server Query Optimizer recognizes star
join patterns and uses bitmap filtered hash joins. Query Optimizer uses hash joins when you join
on non-sorted columns from both tables involved in a join. Hash joins can work in parallel
threads. With bitmap filtering, they can work on a subset of rows from a dimension and from
a fact table in each thread. Bitmap filtered hash joins outperform other types of joins for par-
allel queries with large scans. Such queries are typical for data warehousing environments. For
hash joins, you do not index the foreign keys of a fact table.

Lesson 2: Managing the Performance of a Data Warehouse

57

58

Parallel queries are not very frequent when there are many concurrent users connected
to a SQL Server, which is common for OLTP scenarios. However, even in a DW scenario, you
could have queries with sequential plans only. If these sequential queries deal with smaller
amounts of data as well, then merge or nested loops joins could be faster than hash joins.
Both merge and nested loops joins benefit from indexes on fact table foreign keys. Achieving
merge and nested loops joins could be a reason to create nonclustered indexes on fact table
foreign keys. However, make sure that you analyze your workload thoroughly before creat-
ing the nonclustered indexes on fact table foreign keys; remember that the majority of DW
queries involve scans over large amounts of data. As a general best practice, you should use
as few nonclustered indexes in your data warehouse as possible.

MORE INFO SQL SERVER JOINS
For more information on different SQL Server joins, see the following documents:

®m “Understanding Nested Loops Joins” at http://msdn.microsoft.com/en-us
/library/ms191318.aspx.

m “Understanding Merge Joins” at http://msdn.microsoft.com/en-us/library
/ms190967.aspx.

m “Understanding Hash Joins" at http://msdn.microsoft.com/en-us/library
/ms189313.aspx.

Indexed Views

You can optimize queries that aggregate data and perform multiple joins by permanently
storing the aggregated and joined data. For example, you could create a new table with
joined and aggregated data and then maintain that table during your ETL process.

However, creating additional tables for joined and aggregated data is not a best practice,
because using these tables means you have to change report queries. Fortunately, there
is another option for storing joined and aggregated tables. You can create a view with a
query that joins and aggregates data. Then you can create a clustered index on the view to
get an indexed view. With indexing, you are materializing a view. In the Enterprise Edition of
SQL Server 2012, SQL Server Query Optimizer uses the indexed view automatically—without
changing the query. SQL Server also maintains indexed views automatically. However, to speed
up data loads, you can drop or disable the index before load and then recreate or rebuild it
after the load.

MORE INFO INDEXED VIEWS IN THE DIFFERENT EDITIONS OF SQL SERVER

For more information on indexed view usage and other features supported by different
editions of SQL Server 2012, see “Features Supported by the Editions of SQL Server 2012"
at http://msdn.microsoft.com/en-us/library/cc645993(SQL.110).aspx.

Implementing a Data Warehouse

http://msdn.microsoft.com/en-us/library/ms191318.aspx
http://msdn.microsoft.com/en-us/library/ms191318.aspx
http://msdn.microsoft.com/en-us/library/ms190967.aspx
http://msdn.microsoft.com/en-us/library/ms190967.aspx
http://msdn.microsoft.com/en-us/library/ms189313.aspx
http://msdn.microsoft.com/en-us/library/ms189313.aspx

Indexed views have many limitations, restrictions, and prerequisites, and you should refer to
Books Online for SQL Server 2012 for details about them. However, you can run a simple test
that shows how indexed views can be useful. The following query aggregates the SalesAmount
column over the ProductKey column of the FactinternetSales table in the AdventureWorks-
DW2012 sample database. The code also sets STATISTICS 10 to ON to measure the |O.

NOTE SAMPLE CODE

You can find all the sample code in the Code folder for this chapter provided with the
companion content.

USE AdventureWorksDw2012;

GO

SET STATISTICS IO ON;

GO

SELECT ProductKey,
SUM(SalesAmount) AS Sales,
COUNT_BIG(*) AS NumberOfRows
FROM dbo.FactInternetSales

GROUP BY ProductKey;

GO

The query makes 1,036 logical reads in the FactinternetSales table. You can create a view
from this query and index it, as shown in the following code.

CREATE VIEW dbo.SalesByProduct

WITH SCHEMABINDING AS

SELECT ProductKey,
SUM(SalesAmount) AS Sales,
COUNT_BIG(*) AS NumberOfRows

FROM dbo.FactInternetSales

GROUP BY ProductKey;

GO

CREATE UNIQUE CLUSTERED INDEX CLU_SalesByProduct
ON dbo.SalesByProduct (ProductKey);
GO

Note that the view must be created with the SCHEMABINDING option if you want to index
it. In addition, you must use the COUNT_BIG aggregate function. See the prerequisites for
indexed views in Books Online for SQL Server 2012 for details. Nevertheless, after creating the
view and the index, execute the query again.

SELECT ProductKey,
SUM(SalesAmount) AS Sales,
COUNT_BIG(*) AS NumberOfRows

FROM dbo.FactInternetSales

GROUP BY ProductKey;
GO

Lesson 2: Managing the Performance of a Data Warehouse

59

60

Now the query makes only two logical reads in the SalesByProduct view. Query Optimizer
has figured out that for this query an indexed view exists, and it used the benefits of the in-
dexed view without referring directly to it. After analyzing the indexed view, you should clean
up your AdventureWorksDW2012 database by running the following code.

DROP VIEW dbo.SalesByProduct;
GO

Using Appropriate Query Techniques

No join optimization can help if you write inefficient DW queries. A good example of a typical
DW query is one that involves running totals. You can use non-equi self joins for such queries.
The following example shows a query that calculates running totals on the Gender attri-

bute for customers with a CustomerKey less than or equal to 12,000 using the SalesAmount
measure of the FactinternetSales table in the AdventureWorksDW2012 sample database. As
shown in the code, you can measure the statistics 10 to gain a basic understanding of query
performance.

SET STATISTICS IO ON;
GO
-- Query with a self join
WITH InternetSalesGender AS
(
SELECT ISA.CustomerKey, C.Gender,
ISA.SalesOrderNumber + CAST(ISA.SalesOrderLineNumber AS CHAR(1))
AS OrderLineNumber,
ISA.SalesAmount
FROM dbo.FactInternetSales AS ISA
INNER JOIN dbo.DimCustomer AS C
ON ISA.CustomerKey = C.CustomerKey
WHERE ISA.CustomerKey <= 12000
)
SELECT ISGl.Gender, ISGl.OrderLineNumber,
MIN(ISG1.SalesAmount), SUM(ISG2.SalesAmount) AS RunningTotal
FROM InternetSalesGender AS ISG1l
INNER JOIN InternetSalesGender AS ISG2
ON ISGl.Gender = ISG2.Gender
AND ISGl.OrderLineNumber >= ISG2.0OrderLineNumber
GROUP BY ISGl.Gender, ISG1l.0OrderLineNumber
ORDER BY ISGl1.Gender, ISGl.OrderLineNumber;

The query returns 6,343 rows and performs 2,286 logical reads in the FactInternetSales
table, 124 logical reads in the DimCustomer table, and 5,015 logical reads in a Worktable,
which is a working table that SQL Server created during query execution.

NOTE NUMBER OF LOGICAL READS

You might get slightly different numbers for logical reads; nevertheless, you should get
many more logical reads from the first query than from the second query.

Implementing a Data Warehouse

You can rewrite the query and use the new SQL Server 2012 window functions. The follow-
ing code shows the rewritten query.
-- Query with a window function

WITH InternetSalesGender AS
(
SELECT ISA.CustomerKey, C.Gender,

ISA.SalesOrderNumber + CAST(ISA.SalesOrderLineNumber AS CHAR(1))

AS OrderLineNumber,

ISA.SalesAmount
FROM dbo.FactInternetSales AS ISA

INNER JOIN dbo.DimCustomer AS C

ON ISA.CustomerKey = C.CustomerKey

WHERE ISA.CustomerKey <= 12000
)
SELECT ISG.Gender, ISG.OrderLineNumber, ISG.SalesAmount,

SUM(ISG.SalesAmount)

OVER(PARTITION BY ISG.Gender
ORDER BY ISG.OrderLineNumber
ROWS BETWEEN UNBOUNDED PRECEDING
AND CURRENT ROW) AS RunningTotal

FROM InternetSalesGender AS ISG
ORDER BY ISG.Gender, ISG.OrderLineNumber;
GO

This query returns 6,343 rows as well, and performs 1,036 logical reads in the Factinternet-
Sales table, 57 logical reads in the DimCustomer table, but no logical reads in Worktable.
And this second query executes much faster than the first one—even if you run the first one
without measuring the statistics 10.

Data Compression

SQL Server supports data compression. Data compression reduces the size of the database,
which helps improve query performance because queries on compressed data read fewer
pages from disk and thus use less 0. However, data compression requires extra CPU re-
sources for updates, because data must be decompressed before and compressed after the
update. Data compression is therefore suitable for data warehousing scenarios in which data
is mostly read and only occasionally updated.

SQL Server supports three compression implementations:
® Row compression

m Page compression

m Unicode compression

Row compression reduces metadata overhead by storing fixed data type columnsin a
variable-length format. This includes strings and numeric data. Row compression has only a
small impact on CPU resources and is often appropriate for OLTP applications as well.

Lesson 2: Managing the Performance of a Data Warehouse

61

62

-,

Page compression includes row compression, but also adds prefix and dictionary compres-
sions. Prefix compression stores repeated prefixes of values from a single column in a special
compression information (Cl) structure that immediately follows the page header, replacing
the repeated prefix values with a reference to the corresponding prefix. Dictionary compres-
sion stores repeated values anywhere in a page in the Cl area. Dictionary compression is not
restricted to a single column.

In SQL Server, Unicode characters occupy an average of two bytes. Unicode compression
substitutes single-byte storage for Unicode characters that don't truly require two bytes. De-
pending on collation, Unicode compression can save up to 50 percent of the space otherwise
required for Unicode strings.

EXAM TIP

Unicode compression is applied automatically when you apply either row or page com-
pression.

You can gain quite a lot from data compression in a data warehouse. Foreign keys are of-
ten repeated many times in a fact table. Large dimensions that have Unicode strings in name
columns, member properties, and attributes can benefit from Unicode compression.

Columnstore Indexes and Batch Processing

SQL Server 2012 has a new method of storing nonclustered indexes. In addition to regular
row storage, SQL Server 2012 can store index data column by column, in what's called a
columnstore index. Columnstore indexes can speed up data warehousing queries by a large
factor, from 10 to even 100 times!

A columnstore index is just another nonclustered index on a table. Query Optimizer con-
siders using it during the query optimization phase just as it does any other index. All you
have to do to take advantage of this feature is to create a columnstore index on a table.

A columnstore index is often compressed even further than any data compression type
can compress the row storage—including page and Unicode compression. When a query
references a single column that is a part of a columnstore index, then SQL Server fetches only
that column from disk; it doesn't fetch entire rows as with row storage. This also reduces disk
IO and memory cache consumption. Columnstore indexes use their own compression algo-
rithm; you cannot use row or page compression on a columnstore index.

On the other hand, SQL Server has to return rows. Therefore, rows must be reconstructed
when you execute a query. This row reconstruction takes some time and uses some CPU and
memory resources. Very selective queries that touch only a few rows might not benefit from
columnstore indexes.

Columnstore indexes accelerate data warehouse queries but are not suitable for OLTP
workloads. Because of the row reconstruction issues, tables containing a columnstore index
become read only. If you want to update a table with a columnstore index, you must first

Implementing a Data Warehouse

drop the columnstore index. If you use table partitioning, you can switch a partition to a dif-
ferent table without a columnstore index, update the data there, create a columnstore index
on that table (which has a smaller subset of the data), and then switch the new table data
back to a partition of the original table. You will learn how to implement table partitioning
with columnstore indexes in Lesson 3 of this chapter.

There are three new catalog views you can use to gather information about columnstore
indexes:

m sys.column_store_index_stats
m sys.column_store_segments
m sys.column_store_dictionaries

The columnstore index is divided into units called segments. Segments are stored as large
objects, and consist of multiple pages. A segment is the unit of transfer from disk to memory.
Each segment has metadata that stores the minimum and maximum value of each column for
that segment. This enables early segment elimination in the storage engine. SQL Server loads
only those segments requested by a query into memory.

SQL Server 2012 includes another important improvement for query processing. In batch
mode processing, SQL Server processes data in batches rather than processing one row at a
time. In SQL Server 2012, a batch represents roughly 1000 rows of data. Each column within
a batch is stored as a vector in a separate memory area, meaning that batch mode process-
ing is vector-based. Batch mode processing interrupts a processor with metadata only once
per batch rather than once per row, as in row mode processing, which lowers the CPU burden
substantially.

You can find out whether SQL Server used batch mode processing by analyzing the query
execution plan. There are two new operator properties in the Actual Execution Plan: Estimated-
ExecutionMode and ActualExecutionMode. Batch mode processing is available for a limited list
of operators only:

m Filter

m Project

m Scan

m Local hash (partial) aggregation
m Hash inner join

m (Batch) hash table build

Batch mode processing is particularly useful for data warehousing queries when combined
with bitmap filtered hash join in a star join pattern.

Columnstore indexes have quite a few limitations:
m Columnstore indexes can be nonclustered only.
m You can have only one columnstore index per table.

m [f your table is partitioned, the columnstore index must be partition aligned.

Lesson 2: Managing the Performance of a Data Warehouse

63

64

m Columnstore indexes are not allowed on indexed views.
® A columnstore index can't be a filtered index.
m There are additional data type limitations for columnstore indexes.

You should use a columnstore index on your fact tables, putting all columns of a fact table
in a columnstore index. In addition to fact tables, very large dimensions could benefit from
columnstore indexes as well. Do not use columnstore indexes for small dimensions. Other
best practices for columnstore indexes include the following:

m Use columnstore indexes for
m Read-mostly workloads.
m Updates that append new data.
= Workflows that permit partitioning or index drop/rebuild.
m Queries that often scan and aggregate lots of data.
m Don't use columnstore indexes when
m You update the data frequently.
m Partition switching or rebuilding indexes doesn't fit your workflow.

m Your workload includes mostly small lookup queries.

¥ Quick Check

1. How many columnstore indexes can you have per table?

2. Should you use page compression for OLTP environments?

Quick Check Answers

1. You can have one columnstore index per table.

2. No, you should use age compression only for data warehousing environments.

Loading Data and Using Data Compression and
Columnstore Indexes

In this exercise, you are going to load data to the data warehouse you created in the practice
in Lesson 1 of this chapter. You will use the AdventureWorksDW2012 sample database as the
source for your data. After the data is loaded, you will apply data compression and create a
columnstore index.

If you encounter a problem completing an exercise, you can install the completed projects
from the Solution folder for this chapter and lesson provided with the companion content.

Implementing a Data Warehouse

EXERCISE 1 Load Your Data Warehouse

In the first exercise, you are going to load data in your data warehouse.

1.

If you closed SSMS, start it and connect to your SQL Server instance. Open a new query

window by clicking the New Query button.

Connect to your TK463DW database. Load the Customers dimension by using infor-
mation from Table 2-5 (this is the same as Table 2-1 in the practice for Lesson 1 of this

chapter).

TABLE 2-5 Column Information for the Customers Dimension

Column name Data type Nullability Remarks

CustomerDwKey INT NOT NULL Surrogate key; assign values with a
sequence

CustomerKey INT NOT NULL Concatenate FirstName and LastName
from DimCustomer

FullName NVARCHAR(150) NULL

EmailAddress NVARCHAR(50) NULL

BirthDate DATE NULL

MaritalStatus NCHAR(1) NULL

Gender NCHAR(1) NULL

Education NVARCHAR(40) NULL EnglishEducation from DimCustomer

Occupation NVARCHAR(100) NULL EnglishOccupation from DimCustomer

City NVARCHAR(30) NULL City from DimGeography

StateProvince NVARCHAR(50) NULL StateProvinceName from
DimGeography

CountryRegion NVARCHAR(50) NULL EnglishCountryRegionName from
DimGeography

Age Inherited Inherited Computed column. Calculate the dif-
ference in years between BirthDate
and the current date, and discretize it
in three groups:
B When difference <= 40, label

"Younger”
B When difference > 50, label
"Older”

B Else label “Middle Age”

CurrentFlag BIT NOT NULL Default 1

Lesson 2: Managing the Performance of a Data Warehouse

65

66

The loading query is shown in the following code.

INSERT INTO dbo.Customers
(CustomerDwKey, CustomerKey, FullName,
EmailAddress, Birthdate, MaritalStatus,
Gender, Education, Occupation,
City, StateProvince, CountryRegion)
SELECT
NEXT VALUE FOR dbo.SeqCustomerDwKey AS CustomerDwKey,
C.CustomerKey,
C.FirstName + ' ' + C.LastName AS FullName,
C.EmailAddress, C.BirthDate, C.MaritalStatus,
C.Gender, C.EnglishEducation, C.EnglishOccupation,
G.City, G.StateProvinceName, G.EnglishCountryRegionName
FROM AdventureWorksDW2012.dbo.DimCustomer AS C
INNER JOIN AdventureWorksDW2012.dbo.DimGeography AS G
ON C.GeographyKey = G.GeographyKey;
GO

Load the Products dimension by using the information from Table 2-6 (this is the same
as Table 2-2 in the practice for Lesson 1 of this chapter).

TABLE 2-6 Column Information for the Products Dimension

Column name Data type Nullability Remarks

ProductKey INT NOT NULL

ProductName NVARCHAR(50) | NULL EnglishProductName from DimProduct

Color NVARCHAR(15) | NULL

Size NVARCHAR(50) | NULL

SubcategoryName | NVARCHAR(50) | NULL EnglishProductSubcategoryName from
DimProductSubcategory

CategoryName NVARCHAR(50) | NULL EnglishProductCategoryName from
DimProductCategory

The loading query is shown in the following code.

INSERT INTO dbo.Products
(ProductKey, ProductName, Color,
Size, SubcategoryName, CategoryName)
SELECT P.ProductKey, P.EnglishProductName, P.Color,
P.Size, S.EnglishProductSubcategoryName, C.EnglishProductCategoryName
FROM AdventureWorksDW2012.dbo.DimProduct AS P
INNER JOIN AdventureWorksDW2012.dbo.DimProductSubcategory AS S
ON P.ProductSubcategoryKey = S.ProductSubcategoryKey
INNER JOIN AdventureWorksDW2012.dbo.DimProductCategory AS C
ON S.ProductCategoryKey = C.ProductCategoryKey;
GO

Load the Dates dimension by using the information from Table 2-7 (this is the same as
Table 2-3 in the practice for Lesson 1 of this chapter).

Implementing a Data Warehouse

TABLE 2-7 Column Information for the Dates Dimension

Column name Data type Nullability Remarks

DateKey INT NOT NULL

FullDate DATE NOT NULL FullDateAlternateKey from DimDate
MonthNumberName NVARCHAR(15) NULL Concatenate MonthNumberOfYear

(with leading zeroes when the
number is less than 10) and
EnglishMonthName from DimDate

CalendarQuarter TINYINT NULL

CalendarYear SMALLINT NULL

The loading query is shown in the following code.

INSERT INTO dbo.Dates

(DateKey, FullDate, MonthNumberName,

CalendarQuarter, CalendarYear)

SELECT DateKey, FullDateAlternateKey,
SUBSTRING(CONVERT(CHAR(8), FullDateAlternateKey, 112), 5, 2)
+ ' ' + EnglishMonthName,

CalendarQuarter, CalendarYear

FROM AdventureWorksDW2012.dbo.DimDate;

GO

Load the InternetSales fact table by using the information from Table 2-8 (this is the
same as Table 2-4 in the practice for Lesson 1 of this chapter).

TABLE 2-8 Column Information for the InternetSales Fact Table

Column name Data type Nullability Remarks
InternetSalesKey INT NOT NULL IDENTITY(1,1)
CustomerDwKey INT NOT NULL Using the CustomerKey business key from the

Customers dimension, find the appropriate
value of the CustomerDwKey surrogate key
from the Customers dimension

ProductKey INT NOT NULL OrderDateKey from FactinternetSales
DateKey INT NOT NULL

OrderQuantity SMALLINT NOT NULL Default 0

SalesAmount MONEY NOT NULL Default 0

UnitPrice MONEY NOT NULL Default 0

DiscountAmount FLOAT NOT NULL Default 0

Lesson 2: Managing the Performance of a Data Warehouse

67

68

The loading query is shown in the following code.

INSERT INTO dbo.InternetSales
(CustomerDwKey, ProductKey, DateKey,
OrderQuantity, SalesAmount,
UnitPrice, DiscountAmount)

SELECT C.CustomerDwKey,
FIS.ProductKey, FIS.OrderDateKey,
FIS.OrderQuantity, FIS.SalesAmount,
FIS.UnitPrice, FIS.DiscountAmount

FROM AdventureWorksDW2012.dbo.FactInternetSales AS FIS
INNER JOIN dbo.Customers AS C

ON FIS.CustomerKey = C.CustomerKey;

GO

EXERCISE 2 Apply Data Compression and Create a Columnstore Index

In this exercise, you will apply data compression and create a columnstore index on the
InternetSales fact table.

1.

Use the sp_spaceused system stored procedure to calculate the space used by the
InternetSales table. Use the following code.

EXEC sp_spaceused N'dbo.InternetSales', @updateusage = N'TRUE';
GO

The table should use approximately 3,080 KB for the reserved space. Now use the
ALTER TABLE statement to compress the table. Use page compression, as shown in the
following code.

ALTER TABLE dbo.InternetSales

REBUILD WITH (DATA_COMPRESSION = PAGE);
GO

Measure the reserved space again.

EXEC sp_spaceused N'dbo.InternetSales', @updateusage = N'TRUE';
GO

The table should now use approximately 1,096 KB for the reserved space. You can see
that you spared nearly two-thirds of the space by using page compression.

Create a columnstore index on the InternetSales table. Use the following code.

CREATE COLUMNSTORE INDEX CSI_InternetSales
ON dbo.InternetSales
(InternetSalesKey, CustomerDwKey, ProductKey, DateKey,
OrderQuantity, SalesAmount,
UnitPrice, DiscountAmount);
GO

Implementing a Data Warehouse

6.

You do not have enough data to really measure the advantage of the columnstore
index and batch processing. However, you can still write a query that joins the tables
and aggregate data so you can check whether SQL Server uses the columnstore index.
Here is an example of such a query.
SELECT C.CountryRegion, P.CategoryName, D.CalendarYear,

SUM(I.SalesAmount) AS Sales
FROM dbo.InternetSales AS I

INNER JOIN dbo.Customers AS C

ON I.CustomerDwKey = C.CustomerDwKey

INNER JOIN dbo.Products AS P

ON I.ProductKey = p.ProductKey

INNER JOIN dbo.Dates AS d

ON I.DateKey = D.DateKey

GROUP BY C.CountryRegion, P.CategoryName, D.CalendarYear
ORDER BY C.CountryRegion, P.CategoryName, D.CalendarYear;

Check the execution plan and find out whether the columnstore index has been used.
(For a real test, you should use much larger data sets.)

It is interesting to measure how much space a columnstore index occupies. Use the
sp_spaceused system procedure again.

EXEC sp_spaceused N'dbo.InternetSales', @updateusage = N'TRUE';
GO

This time the reserved space should be approximately 1,560 KB. You can see that al-
though you used page compression for the table, the table is still compressed less than
the columnstore index. In this case, the columnstore index occupies approximately half
of the space of the table.

NOTE CONTINUING WITH PRACTICES

Do not exit SSMS if you intend to continue immediately with the next practice.

Lesson Summary

In this lesson, you learned how to optimize data warehouse query performance.
In a DW, you should not use many nonclustered indexes.

Use small, integer surrogate columns for clustered primary keys.

Use indexed views.

Use columnstore indexes and exploit batch processing.

Lesson 2: Managing the Performance of a Data Warehouse

69

70

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1. Which types of data compression are supported by SQL Server? (Choose all that apply.)

A. Bitmap
B. Unicode
C. Row

D. Page

2. Which operators can benefit from batch processing? (Choose all that apply.)

A. Hash Join

B. Merge Join

C. Scan

D. Nested Loops Join
E. Filter

3. Why would you use indexed views? (Choose all that apply.)

To speed up queries that aggregate data

To speed up data load

n

To speed up selective queries

To speed up queries that involve multiple joins

Lesson 3: Loading and Auditing Loads

Loading large fact tables can be a problem. You have only a limited time window in which to
do the load, so you need to optimize the load operation. In addition, you might be required
to track the loads.

After this lesson, you will be able to:
m Use partitions to load large fact tables in a reasonable time.

m Add lineage information to fact table loads.

Estimated lesson time: 45 minutes

Implementing a Data Warehouse

Using Partitions

Loading even very large fact tables is not a problem if you can perform incremental loads.
However, this means that data in the source should never be updated or deleted; data should
be inserted only. This is rarely the case with LOB applications. In addition, even if you have
the possibility of performing an incremental load, you should have a parameterized ETL pro-
cedure in place so you can reload portions of data loaded already in earlier loads. There is
always a possibility that something might go wrong in the source system, which means that
you will have to reload historical data. This reloading will require you to delete part of the
data from your data warehouse.

Deleting large portions of fact tables might consume too much time, unless you perform a
minimally logged deletion. A minimally logged deletion operation can be done by using the
TRUNCATE TABLE command; however, this command deletes all the data from a table—and
deleting all the data is usually not acceptable. More commonly, you need to delete only por-
tions of the data.

Inserting huge amounts of data could consume too much time as well. You can do a mini-
mally logged insert, but as you already know, minimally logged inserts have some limitations.
Among other limitations, a table must either be empty, have no indexes, or use a clustered
index only on an ever-increasing (or ever-decreasing) key, so that all inserts occur on one end
of the index. However, you would probably like to have some indexes on your fact table—at
least a columnstore index. With a columnstore index, the situation is even worse—the table
becomes read only.

You can resolve all of these problems by partitioning a table. You can even achieve better
query performance by using a partitioned table, because you can create partitions in differ-
ent filegroups on different drives, thus parallelizing reads. You can also perform maintenance
procedures on a subset of filegroups, and thus on a subset of partitions only. That way, you
can also speed up regular maintenance tasks. Altogether, partitions have many benefits.

Although you can partition a table on any attribute, partitioning over dates is most com-
mon in data warehousing scenarios. You can use any time interval for a partition. Depend-
ing on your needs, the interval could be a day, a month, a year, or any other interval. You
can have as many as 15,000 partitions per table in SQL Server 2012. You can create all the
partitions in advance, or you can use a sliding window scenario. For more information on the
sliding window scenario and how to automate data loads in this scenario, refer to the SQLCAT
whitepaper, “How to Implement an Automatic Sliding Window in a Partitioned Table on SQL
Server 2005" at http.//msdn.microsoft.com/en-us/library/aa964122(SQL.90).aspx.

Lesson 3: Loading and Auditing Loads 71

In addition to partitioning tables, you can also partition indexes. Partitioned table and
index concepts include the following:

m Partition function This is an object that maps rows to partitions by using values
from specific columns. The columns used for the function are called partitioning col-
umns. A partition function performs logical mapping.

m Partition scheme A partition scheme maps partitions to filegroups. A partition
scheme performs physical mapping.

m Aligned index This is an index built on the same partition scheme as its base table.
If all indexes are aligned with their base table, switching a partition is a metadata op-
eration only, so it is very fast. Columnstore indexes have to be aligned with their base
tables. Nonaligned indexes are, of course, indexes that are partitioned differently than
their base tables.

= Partition elimination This is a Query Optimizer process in which SQL Server ac-
cesses only those partitions needed to satisfy query filters.

m Partition switching This is a process that switches a block of data from one table or
partition to another table or partition. You switch the data by using the ALTER TABLE
T-SQL command. You can perform the following types of switches:

m Reassign all data from a nonpartitioned table to an empty existing partition of a
partitioned table.

m Switch a partition of one partitioned table to a partition of another partitioned
table.

m Reassign all data from a partition of a partitioned table to an existing empty non-
partitioned table.

EXAM TIP

Make sure you understand the relationship between columnstore indexes and table parti-
tioning thoroughly.

Any time you create a large partitioned table you should create two auxiliary nonindexed
empty tables with the same structure, including constraints and data compression options.
For one of these two tables, create a check constraint that guarantees that all data from the
table fits exactly with one empty partition of your fact table. The constraint must be created
on the partitioning column. You can have a columnstore index on your fact table, as long as it
is aligned with the table.

For minimally logged deletions of large portions of data, you can switch a partition from
the fact table to the empty table version without the check constraint. Then you can truncate
that table. The TRUNCATE TABLE statement is minimally logged. Your first auxiliary table
is prepared to accept the next partition from your fact table for the next minimally logged
deletion.

Implementing a Data Warehouse

For minimally logged inserts, you can bulk insert new data to the second auxiliary table,
the one that has the check constraint. In this case, the INSERT operation can be minimally
logged because the table is empty. Then you create a columnstore index on this auxiliary
table, using the same structure as the columnstore index on your fact table. Now you can
switch data from this auxiliary table to a partition of your fact table. Finally, you drop the col-
umnstore index on the auxiliary table, and change the check constraint to guarantee that all
of the data for the next load can be switched to the next empty partition of your fact table.
Your second auxiliary table is prepared for new bulk loads again.

(Quick Check

m How many partitions can you have per table?

Quick Check Answer
m In SQL Server 2012, you can have up to 15,000 partitions per table.

Data Lineage

Auditing by adding data lineage information for your data loads is quite simple. You add ap-
propriate columns to your dimensions and/or fact tables, and then you insert or update the
values of these columns with each load. If you are using SSIS as your ETL tool, you can use
many of the SSIS system variables to add lineage information to your data flow.

If you are loading data with T-SQL commands and procedures, you can use T-SQL system
functions to get the desired lineage information. The following query uses system functions
that are very useful for capturing lineage information.

SELECT

APP_NAME() AS ApplicationName,

DATABASE_PRINCIPAL_ID() AS DatabasePrincipalld,
USER_NAME() AS DatabasePrincipalName,

SUSER_ID() AS ServerPrincipalld,

SUSER_SID() AS ServerPrincipalSID,

SUSER_SNAME() AS ServerPrincipalName,
CONNECTIONPROPERTY('net_transport') AS TransportProtocol,
CONNECTIONPROPERTY('client_net_address') AS ClientNetAddress,
CURRENT_TIMESTAMP AS CurrentDateTime,

@@ROWCOUNT AS RowsProcessedByLastCommand;
GO

Besides lineage information, you might also want to log additional information about the
whole load, not just the row-level information. For example, you might want to add the time
at which the load execution started, when it ended, the number of rows transferred, and so
on. You can create a custom logging table and insert this information at the start and end of
the ETL process. If you are using SSIS as your ETL tool, you can use the SSIS built-in logging
capabilities to store this load-level information.

Lesson 3: Loading and Auditing Loads

73

Performing Table Partitioning

In this practice, you test the use of table partitioning for a minimally logged data load.

If you encounter a problem completing an exercise, you can install the completed projects
from the Solution folder for this chapter and lesson provided with the companion content.

EXERCISE 1 Prepare Your Fact Table for Partitioning

In this exercise, you will create all the objects you need for partitioning, and then you will load
them with data.

1. If you closed SSMS, start it and connect to your SQL Server instance. Open a new query
window by clicking the New Query button.

2. Connect to your TK463DW database. Drop the InternetSales table.

3. Create a partition function that will split data to 10 partitions for every year from the
year 2000 to the year 2009. Use the smallest possible data type for the parameter of
the partitioning column. You can use the following code.

CREATE PARTITION FUNCTION PfInternetSalesYear (TINYINT)

AS RANGE LEFT FOR VALUES (1, 2, 3, 4, 5, 6, 7, 8, 9);
GO

4. Create a partition scheme that will map all partitions to the Primary filegroup, as
shown in the following code.
CREATE PARTITION SCHEME PsInternetSalesYear
AS PARTITION PfInternetSalesYear

ALL TO ([PRIMARYD);
GO

5. Re-create the FactinternetSales table. Add a partitioning column. Use the same data
type for this column as you used for the parameter of the partitioning function. Use
the following code.

CREATE TABLE dbo.InternetSales

(

InternetSalesKey INT NOT NULL IDENTITY(1,1),
PcInternetSalesYear TINYINT NOT NULL,

CustomerDwKey INT NOT NULL,

ProductKey INT NOT NULL,

DateKey INT NOT NULL,
OrderQuantity SMALLINT NOT NULL DEFAULT O,
SalesAmount MONEY NOT NULL DEFAULT O,
UnitPrice MONEY NOT NULL DEFAULT 0,
DiscountAmount FLOAT NOT NULL DEFAULT O,

CONSTRAINT PK_InternetSales
PRIMARY KEY (InternetSalesKey, PcInternetSalesYear)
)
ON PsInternetSalesYear(PcInternetSalesYear);
GO

74 Implementing a Data Warehouse

Add foreign keys and compress data for the InternetSales table.

ALTER TABLE dbo.InternetSales ADD CONSTRAINT
FK_InternetSales_Customers FOREIGN KEY(CustomerDwKey)
REFERENCES dbo.Customers (CustomerDwKey);

ALTER TABLE dbo.InternetSales ADD CONSTRAINT
FK_InternetSales_Products FOREIGN KEY(ProductKey)
REFERENCES dbo.Products (ProductKey);

ALTER TABLE dbo.InternetSales ADD CONSTRAINT
FK_InternetSales_Dates FOREIGN KEY(DateKey)
REFERENCES dbo.Dates (DateKey);

GO

ALTER TABLE dbo.InternetSales
REBUILD WITH (DATA_COMPRESSION = PAGE);

GO

Load data to the InternetSales table. Extract only the year number for the DateKey
column. Make sure you load years earlier than the year 2008 only. You can use the fol-

lowing code.

INSERT INTO dbo.InternetSales
(PcInternetSalesYear, CustomerDwKey,
ProductKey, DateKey,
OrderQuantity, SalesAmount,
UnitPrice, DiscountAmount)
SELECT
CAST(SUBSTRING(CAST(FIS.OrderDateKey AS CHAR(8)), 3, 2)
AS TINYINT)
AS PcInternetSalesYear,
C.CustomerDwKey,
FIS.ProductKey, FIS.OrderDateKey,
FIS.OrderQuantity, FIS.SalesAmount,
FIS.UnitPrice, FIS.DiscountAmount
FROM AdventureWorksDW2012.dbo.FactInternetSales AS FIS
INNER JOIN dbo.Customers AS C
ON FIS.CustomerKey = C.CustomerKey
WHERE
CAST(SUBSTRING(CAST(FIS.OrderDateKey AS CHAR(8)), 3, 2)
AS TINYINT) < 8;
GO

Re-create the columnstore index of the InternetSales table.

CREATE COLUMNSTORE INDEX CSI_InternetSales
ON dbo.InternetSales
(InternetSalesKey, PcInternetSalesYear,
CustomerDwKey, ProductKey, DateKey,
OrderQuantity, SalesAmount,
UnitPrice, DiscountAmount)
ON PsInternetSalesYear(PcInternetSalesYear);
GO

Lesson 3: Loading and Auditing Loads

75

76

EXERCISE 2 Load Minimally Logged Data to a Partitioned Table

In this exercise, you prepare a table for new data, load it, and use partition switching to assign
this data to a partition of your partitioned fact table.

1. Create a new table with the same structure as the InternetSales table. Add a check con-
straint to this table. The check constraint must accept only the year 8 (short for 2008)
for the partitioning column. Here is the code.

CREATE TABLE dbo.InternetSalesNew

(

InternetSalesKey INT NOT NULL IDENTITY(1,1),
PcInternetSalesYear TINYINT NOT NULL
CHECK (PcInternetSalesYear = 8),

CustomerDwKey INT NOT NULL,
ProductKey INT NOT NULL,
DateKey INT NOT NULL,
OrderQuantity SMALLINT NOT NULL DEFAULT O,
SalesAmount MONEY NOT NULL DEFAULT O,
UnitPrice MONEY NOT NULL DEFAULT O,
DiscountAmount FLOAT NOT NULL DEFAULT O,

CONSTRAINT PK_InternetSalesNew

PRIMARY KEY (InternetSalesKey, PcInternetSalesYear)
)3
GO

2. Create the same foreign keys and apply the same data compression settings as for the
InternetSales table.

ALTER TABLE dbo.InternetSalesNew ADD CONSTRAINT
FK_InternetSalesNew_Customers FOREIGN KEY(CustomerDwKey)
REFERENCES dbo.Customers (CustomerDwKey);

ALTER TABLE dbo.InternetSalesNew ADD CONSTRAINT
FK_InternetSalesNew_Products FOREIGN KEY(ProductKey)
REFERENCES dbo.Products (ProductKey);

ALTER TABLE dbo.InternetSalesNew ADD CONSTRAINT
FK_InternetSalesNew_Dates FOREIGN KEY(DateKey)
REFERENCES dbo.Dates (DateKey);

GO

ALTER TABLE dbo.InternetSalesNew
REBUILD WITH (DATA_COMPRESSION = PAGE);

GO

3. Load the year 2008 to the InternetSalesNew table.

INSERT INTO dbo.InternetSalesNew
(PcInternetSalesYear, CustomerDwKey,

ProductKey, DateKey,

OrderQuantity, SalesAmount,

UnitPrice, DiscountAmount)
SELECT

CAST(SUBSTRING(CAST(FIS.OrderDateKey AS CHAR(8)), 3, 2)

AS TINYINT)
AS PcInternetSalesYear,

Implementing a Data Warehouse

C.CustomerDwKey,
FIS.ProductKey, FIS.OrderDateKey,
FIS.OrderQuantity, FIS.SalesAmount,
FIS.UnitPrice, FIS.DiscountAmount
FROM AdventureWorksDW2012.dbo.FactInternetSales AS FIS
INNER JOIN dbo.Customers AS C
ON FIS.CustomerKey = C.CustomerKey
WHERE
CAST(SUBSTRING(CAST(FIS.OrderDateKey AS CHAR(8)), 3, 2)
AS TINYINT) = 8;
GO

Create a columnstore index on the InternetSalesNew table.

CREATE COLUMNSTORE INDEX CSI_InternetSalesNew
ON dbo.InternetSalesNew
(InternetSalesKey, PcInternetSalesYear,
CustomerDwKey, ProductKey, DateKey,
OrderQuantity, SalesAmount,
UnitPrice, DiscountAmount);
GO

Check the number of rows in partitions of the InternetSales table and the number of

rows in the InternetSalesNew table.

SELECT
$PARTITION.PfInternetSalesYear(PcInternetSalesYear)
AS PartitionNumber,

COUNT(*) AS NumberOfRows

FROM dbo.InternetSales

GROUP BY
$PARTITION.PfInternetSalesYear(PcInternetSalesYear);

SELECT COUNT(*) AS NumberOfRows

FROM dbo.InternetSalesNew;

GO

There should be no rows after the seventh partition of the InternetSales table and
some rows in the InternetSalesNew table.
Do the partition switching. Use the following code.

ALTER TABLE dbo.InternetSalesNew
SWITCH TO dbo.InternetSales PARTITION 8;
GO

Check the number of rows in partitions of the InternetSales table and the number of
rows in the InternetSalesNew table again.

There should be rows in the eighth partition of the InternetSales table and no rows in
the InternetSalesNew table.

Prepare the InternetSalesNew table for the next load by dropping the columnstore
index and changing the check constraint.

Save your code and exit SSMS.

Lesson 3: Loading and Auditing Loads

77

78

Lesson Summary

Table partitioning is extremely useful for large fact tables with columnstore indexes.

Partition switch is a metadata operation only if an index is aligned with its base table.

You can add lineage information to your dimensions and fact tables to audit changes
to your DW on a row level.

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1.

The database object that maps partitions of a table to filegroups is called a(n)

A.
B.

Aligned index
Partition function
Partition column

Partition scheme

If you want to switch content from a nonpartitioned table to a partition of a partitioned
table, what conditions must the nonpartitioned table meet? (Choose all that apply.)

It must have the same constraints as the partitioned table.
It must have the same compression as the partitioned table.
It must be in a special PartitionedTables schema.

It must have a check constraint on the partitioning column that guarantees that all
of the data goes to exactly one partition of the partitioned table.

It must have the same indexes as the partitioned table.

Which of the following T-SQL functions is not very useful for capturing lineage
information?

A.
B.

APP_NAME()
USER_NAME()
DEVICE_STATUS()
SUSER_SNAME()

Case Scenarios

In the following case scenarios, you apply what you've learned about optimized querying and
securing a data warehouse. You can find the answers to these questions in the “Answers” sec-
tion at the end of this chapter.

Implementing a Data Warehouse

Case Scenario 1: Slow DW Reports

You have created a data warehouse and populated it. End users have started using it for
reports. However, they have also begun to complain about the performance of the reports.
Some of the very slow reports calculate running totals. You need to answer the following
questions.

1. What changes can you implement in your DW to speed up the reports?

2. Does it make sense to check the source queries of the reports with running totals?

Case Scenario 2: DW Administration Problems

Your end users are happy with the DW reporting performance. However, when talking with

a DBA, you were notified of potential problems. The DW transaction log grows by more than
10 GB per night. In addition, end users have started to create reports from staging tables, and
these reports show messy data. End users complain to the DBA that they cannot trust your
DW if they get such messy data in a report.

1. How can you address the runaway log problem?

2. What can you do to prevent end users from using the staging tables?

Suggested Practices

To help you successfully master the exam objectives presented in this chapter, complete the
following tasks.

Test Different Indexing Methods

For some queries, indexed views could be the best performance booster. For other queries,
columnstore indexes could be more appropriate. Still other queries would benefit from non-
clustered indexes on foreign keys.

m Practicel Write an aggregate query for Internet sales in the AdventureWorkDW2012
sample database. Create an appropriate indexed view and run the aggregate query.
Check the statistics IO and execution plan.

m Practice 2 Drop the indexed view and create a columnstore index. Run the query
and check the statistics 10 and execution plan again.

m Practice 3 Drop the columnstore index and create nonclustered indexes on all for-
eign keys of the fact table included in joins. Run the query and check the statistics 1O
and execution plan again.

m Practice 4 Inthe DimCustomer dimension of the AdventureWorksDW2012 sample
database, there is a Suffix column. It is NULL for all rows but three. Create a filtered non-
clustered index on this column and test queries that read data from the DimCustomer
dimension using different filters. Check how the query performs when Suffix is NULL
and when Suffix is known (is not NULL).

Suggested Practices

79

80

Test Table Partitioning
In order to understand table partitioning thoroughly, you should test it with aligned and
nonaligned indexes.

m Practice 1 Partition the FactinternetSales table in the AdventureWorkDW2012 sam-
ple database. Create aligned nonclustered indexes on all foreign keys of the fact table
included in joins of the query from the previous practice. Run the query and check the
execution plan.

m Practice 2 Create nonaligned nonclustered indexes on all foreign keys of the fact
table included in joins of the query from the previous practice. Run the query and
check the execution plan again.

Implementing a Data Warehouse

Answers

This section contains answers to the lesson review questions and solutions to the case sce-
narios in this chapter.

Lesson 1

1. Correct Answers: A and B

A.
B.

Correct: The IDENTITY property autonumbers rows.

Correct: You can use the new SQL Server 2012 SEQUENCE object for
autonumbering.

Incorrect: Primary keys are used to uniquely identify rows, not for
autonumbering.

Incorrect: Check constraints are used to enforce data integrity, not for
autonumbering.

2. Correct Answers: Band D

A.

C.

Incorrect: Member properties are dimension columns used for additional infor-
mation on reports only.

Correct: You need a current flag for denoting the current row when you imple-
ment Type 2 SCD changes.

Incorrect: Lineage columns are used, as their name states, to track the lineage
information.

Correct: You need a new, surrogate key when you implement Type 2 SCD changes.

3. Correct Answer: C

A. Incorrect: You do not add rows to a fact table during dimension load.

B. Incorrect: You do not create rows with aggregated values.

C. Correct: A row in a dimension added during fact table load is called an inferred
member.

D. Incorrect: A computed column is just a computed column, not an inferred member.

Lesson 2
1. Correct Answers: B, C, and D

A. Incorrect: SQL Server does not support bitmap compression.

B. Correct: SQL Server supports Unicode compression. It is applied automatically
when you use either row or page compression.

C. Correct: SQL Server supports row compression.

D. Correct: SQL Server supports page compression.

Answers 81

2. Correct Answers: A, C, and E
A. Correct: Hash joins can use batch processing.
B. Incorrect: Merge joins do not use batch processing.
Correct: Scan operators can benefit from batch processing.
D. Incorrect: Nested loops joins do not use batch processing.

E. Correct: Filter operators use batch processing as well.

3. Correct Answers: A and D

A. Correct: Indexed views are especially useful for speeding up queries that aggre-
gate data.

B. Incorrect: As with any indexes, indexed views only slow down data load.
C. Incorrect: For selective queries, nonclustered indexes are more appropriate.

D. Correct: Indexed views can also speed up queries that perform multiple joins.

Lesson 3

1. Correct Answer: D

A. Incorrect: Aligned indexes are indexes with the same partitioning as their base
table.

B. Incorrect: The partition function does logical partitioning.
C. Incorrect: The partition column is the column used for partitioning.

D. Correct: The partition scheme does physical partitioning.

2. Correct Answers: A, B, D, and E
A. Correct: It must have the same constraints as the partitioned table.
B. Correct: It must have the same compression as the partitioned table.
C. Incorrect: There is no special schema for partitioned tables.

D. Correct: It must have a check constraint to guarantee that all data goes to a single
partition.

E. Correct: It must have the same indexes as the partitioned table.

3. Correct Answer: C

A. Incorrect: The APP_NAME() function can be useful for capturing lineage
information.

B. Incorrect: The USER_NAME() function can be useful for capturing lineage
information.

C. Correct: There is no DEVICE_STATUS() function in T-SQL.

D. Incorrect: The SUSER_SNAME() function can be useful for capturing lineage
information.

Implementing a Data Warehouse

Case Scenario 1

1.

You should consider using columnstore indexes, indexed views, data compression, and
table partitioning.

Yes, it is definitely worth checking the queries of the running totals reports. The que-
ries probably use joins or subqueries to calculate the running totals. Consider using
window functions for these calculations.

Case Scenario 2

1.

You should check the DW database recovery model and change it to Simple. In addi-
tion, you could use the DBCC SHRINKFILE command to shrink the transaction log to a
reasonable size.

End users apparently have permissions, at least the SELECT permission, on the stag-
ing tables. Advise the DBA to revoke permissions from end users on staging tables. In
addition, to speed up the security administration, you should put all staging tables in a
separate schema, thus allowing the DBA to administer them as a group.

Answers

83

Developing SSIS
Packages

CHAPTER 3 Creating SSIS Packages 87
CHAPTER 4 Designing and Implementing Control Flow 131

CHAPTER5 Designing and Implementing Data Flow 177

Creating SSIS Packages

Exam objectives in this chapter:
m Extract and Transform Data
m Define connection managers.
®m load Data

m Design control flow.

ata movement represents an important part of data management. Data is transported

from client applications to the data server to be stored, and transported back from
the database to the client to be managed and used. In data warehousing, data movement
represents a particularly important element, considering the typical requirements of a data
warehouse: the need to import data from one or more operational data stores, the need
to cleanse and consolidate the data, and the need to transform data, which allows it to be
stored and maintained appropriately in the data warehouse.

Microsoft SQL Server 2012 provides a dedicated solution for this particular set of
requirements: SQL Server Integration Services (SSIS). In contrast to Line of Business (LOB)
data management operations, in which individual business entities are processed one at a
time in the client application by a human operator, data warehousing (DW) operations are
performed against collections of business entities in automated processes. In light of these
important differences, SSIS provides the means to perform operations against large quanti-
ties of data efficiently and, as much as possible, without any need for human intervention.

Another difference between LOB and DW data management is when the operations are
executed; LOB operations are predominantly performed during standard work hours, but
DW operations are performed during “maintenance windows": typically, data maintenance
in a DW is performed during times of less usage or no usage at all (for example, at night).
This is both in order to reduce the impact of resource-intensive operations on the LOB sys-
tem as well as to reduce the impact of data volatility on the DW.

87

88

-,

<,

Based on the level of complexity, data movement scenarios can be divided into two

groups:

m Simple data movements, where data is moved from the source to the destination
"as-is" (unmodified)

m Complex data movements, where the data needs to be transformed before it can be
stored, and where additional programmatic logic is required to accommodate the
merging of the new and/or modified data, arriving from the source, with existing data,
already present at the destination

In light of this, the SQL Server 2012 tool set provides two distinct approaches to develop-

ing data movement processes:

m The SQL Server Import and Export Wizard, which can be used to design (and execute)
simple data movements, such as the transfer of data from one database to another

m The SQL Server Data Tools, which boast a complete integrated development environ-
ment, providing SQL Server Integration Services (SSIS) developers with the ability to
design even the most complex data movement processes

What constitutes a complex data movement? Three distinct elements can be observed in

any complex data movement process:

1. The data is extracted from the source (retrieved from the operational data store).

2. The data is transformed (cleansed, converted, reorganized, and restructured) to comply
with the destination data model.
3. The data is loaded into the destination data store (such as a data warehouse).

This process is also known as extract-transform-load, or ETL. In simple data movements,
however, the transform element is omitted, leaving only two elements: extract and load.

In this chapter, you will learn how to use the SQL Server Import and Export Wizard to copy
the data from one database to another, and you will begin your journey into the exciting
world of SSIS package development using the SQL Server Data Tools (SSDT).

NOTE DATA MOVEMENTS IN DATA WAREHOUSING

In typical data warehousing scenarios, few data movements require no transformations at
all; the majority of data movements at the very least require structural changes so that the
data will adhere to the data model used by the data warehouse.

Creating SSIS Packages

Lessons in this chapter:
m Lesson 1: Using the SQL Server Import and Export Wizard
m Lesson 2: Developing SSIS Packages in SSDT

m Lesson 3: Introducing Control Flow, Data Flow, and Connection Managers

Before You Begin

To complete this chapter, you must have:
m Experience working with SQL Server Management Studio (SSMS).

m Elementary experience working with Microsoft Visual Studio or SQL Server Data Tools
(SSDT).

m A working knowledge of the Transact-SQL language.

Lesson 1: Using the SQL Server Import and
Export Wizard

For simple data movement scenarios, especially when time reserved for development is
scarce, using a rich development environment with all the tools and features available could
present quite a lot of unnecessary overhead. In fact, all that is actually needed in a simple
data movement is a source, a destination, and a way to invoke the transfer. SQL Server offers
a simplified development interface—essentially a step-by-step wizard perfectly suitable for
simple data movements: the SQL Server Import and Export Wizard.

After this lesson, you will be able to:
m Understand when to use the SQL Server Import and Export Wizard.

m Use the SQL Server Import and Export Wizard.

Estimated lesson time: 20 minutes

Planning a Simple Data Movement

To determine whether the and Export Wizard is the right tool for a particular data movement,
ask yourself a few simple questions:
= Will the data need to be transformed before it can be stored at the destination?
If no transformations are required, then the Import and Export Wizard might be the
right tool for the job. If transformations are required, you might still be able to use the
Import and Export Wizard, if the transformations can all be managed inside the SELECT
query that is used when the data is extracted from the source.

Lesson 1: Using the SQL Server Import and Export Wizard

89

920

m [s it necessary to merge source data with existing data at the destination?

If no data exists at the destination (for example, because the destination itself does not

yet exist), then using the Import and Export Wizard should be the right choice. The

same is true if data does already exist at the destination but merging new and old data

is not necessary (for example, when duplicates are allowed at the destination).

m [f the destination does not yet exist, is there enough free space available at the SQL
Server instance's default data placement location?

Although the Import and Export Wizard will let you create the destination database as

part of the process, it will only allow you to specify the initial size and growth proper-
ties for the newly created database files; it will not allow you to specify where the files
are to be placed. If enough space is available at the default location, then using the
Import and Export Wizard might be the right choice.

If you have determined that the Import and Export Wizard fits your data movement re-
quirements, use it; otherwise, you will be better off developing your solution by using SSDT.

() EXAM TIP

Plan data movements carefully, and consider the benefits as well as the shortcomings of
the Import and Export Wizard.

(Quick Check
1. What is the SQL Server Import and Export Wizard?

2. What is the principal difference between simple and complex data movements?

Quick Check Answers

1. The Import and Export Wizard is a utility that provides a simplified interface
for developing data movement operations where data is extracted from a
source and loaded into a destination, without the need for any transformations.

2. In simple data movements, data is copied from one data store into another one
unmodified, whereas in complex data movements, data is modified (trans-
formed) before being loaded into the destination data store.

Creating SSIS Packages

Creating a Simple Data Movement

In this practice, you will use the Import and Export Wizard to extract data from a view in an
existing database and load it into a newly created table in a newly created database. You will
learn how to develop a data movement process by using the step-by-step approach provided
by the wizard, you will save the SSIS package created by the wizard to the file system, and
then you will execute the newly developed process.

If you encounter a problem completing an exercise, you can install the completed projects
from the Solution folder that is provided with the companion content for this chapter and
lesson.

EXERCISE 1 Extract Data from a View and Load It into a Table

1. Start the SQL Server Import and Export Wizard: on the Start menu, click All
Programs | Microsoft SQL Server 2012. On the Welcome page, click Next.

2. To choose the data source, connect to your server, select the appropriate authentica-
tion settings, and select the AdventureWorks2012 database, as shown in Figure 3-1.
Then click Next.

. SQL Server Import and Export Wizard - |EI|1|

Choose a Data Source
Select the source from which to copy data.

Data source: I 8 SQL Server Native Client 11.0 j

Server name: Iﬂocal} j

' Use Windows Authentication

" Use SQL Server Authentication

User name: |

Password: |

Database: AdventureWorks2012] Refresh |

Help | <Back |[Next> Einish > Cancel |

FIGURE 3-1 Choosing a data source.

Lesson 1: Using the SQL Server Import and Export Wizard 91

92

To choose a destination, connect to your server and use the same authentication set-
tings as in the previous step. This is shown in Figure 3-2. One option is to load the data
into an existing database; however, in this exercise, the destination database does not

exist. Click New to create it.

'_SQLServerImportand Export Wizard _|EI|1|
Choose a Destination
Specify where to copy data to.
Destination: I 8 SQL Server Native Client 11.0 j
Server name: Iﬂocal} j

' Use Windows Authentication

" Use SQL Server Authentication

User name: |
Password: |
Database: | Refresh |

Help | < Back Mext =

Einish >3/ Cancel |

4

FIGURE 3-2 Choosing a destination.

To create a new database, provide a name for it (TK463), as shown in Figure 3-3. Leave
the rest of the settings unchanged. Then click OK, and then Next.

On the next page, shown in Figure 3-4, you need to decide whether you want to
extract the data from one or more existing objects of the source database or whether
you want to use a single query to extract the data. Select Copy Data From One Or

More Tables Or Views, and then click Next.

The first option allows you to select multiple objects, but it does not allow you to
restrict the extracted data; the second option, on the other hand, allows you to restrict
the extracted data, but it only supports a single result set.

Creating SSIS Packages

B create Database

FIGURE 3-3 Creating the database.

B soL server Import and Export Wizard

Specify Table Copy or Query
Specify whether to copy one or more tables and views or to copy the results of a query
from the data source.

FIGURE 3-4 Specifying table copy or query.

Lesson 1: Using the SQL Server Import and Export Wizard CHAPTER3 93

94

EXAM TIP

You should understand the difference between the option to copy data from one or more

tables and the option to use a query to specify the data to transfer, so that you can select the

best option in a particular situation.

For instance, copying from tables and views allows multiple data flows but no additional

restrictions, whereas copying data by using a query allows restrictions to be specified, but

only allows a single data flow.

6.

On the next page, you select the objects from which you want to extract the data. In
this exercise, you will extract the data from two views and load it into two newly cre-
ated tables in the destination database.

In the left column of the grid, select the following two source views:

m [Production].[vProductAndDescription]

m [Production].[vProductModellnstructions]

In the right column, change the names of the destination tables, as follows:

m [Production].[ProductAndDescription]

® [Production].[ProductModellnstructions]

The result is shown in Figure 3-5.

Select the first view, and then click Edit Mappings. As shown in Figure 3-6, you can see
that the data extracted from the view will be inserted into a newly created table.

The definition of the new table is prepared automatically by the wizard and is based on
the schema of the source row set. If necessary, you can modify the table definition by
clicking Edit SQL. However, in this exercise, you should leave the definition unchanged.

REAL WORLD EXTRACTING DATA FROM VIEWS

Using views as data sources has its benefits as well as some shortcomings. The abil-

ity to implement some basic data transformation logic at the source can be beneficial,
because it provides an instant “look and feel,” inside the operational data store, of how
the data will appear in the data warehouse. However, modifying the view might have a
negative effect on the data movement process—changes that affect the data type of
the view's columns, as well as changes to the view's schema (such as adding or remov-
ing columns) might cause the dependent SSIS solutions to break.

Creating SSIS Packages

'_ 5QL Server Import and Export Wizard = | [m] 5'

Select Source Tables and Views
Choose one or more tebles and views to copy.

Tables and views:

|7| Source: {ocal) I Destination: Jocal) I;I
™) [HumanResources] [vJobCandidate]

() EJ [HumanResources] [vJobCandidate Educa...

[EJ [HumanResources].[vJobCandidate Emplo...

™ [[Person]. lvAdditionalContactinfo]

— EJ [Person]. [v State ProvinceCountryRegion]

— EJ [Preduction].[vProductMedelCatalogDescr...
2 EJ [Preduction].[v ProductModelInstructions]
— EJ [Purchasing].[vVendorWith Addresses]

— EJ [Purchasing].vVendorWithContacts]

™ 3 [Sales] [vindividualCustomer]

— EJ [Sales] [vPersonDemographics]

I~ 1) [Sales] [vSalesPerson]

I~) [Sales] [vSalesPersonSalesByFiscal Years]
I~) [Sales] [vStoreWith Addresses]

I 1] [Sales] [vStoreWithContacts]

™ [[Sales] [vStoreWith Demographics]

[Production].[ProductModelinstructions]

Edit Mappings... | Preview... |

Help | <Back [Nextz | Enishosl | Cancal |

4
FIGURE 3-5 Selecting source tables and views.
gl
Source: [Production].[vProductfndDescription]
Destination: [Production].[PreductAndDescription]
% Create destination table Edit SGL.. |
" Delete rows in destination izble [~ Drop and re-create destination table
£ Append rows to the destination t=ble. [Enable identity insert
Mappings:
Source Destination | Type | Nullablel Size | Precision | Scale |
ProductID ProductID int -
Name Name nvarchar - 50
Product Model Product Mode! nvarchar - 50
CutturelD Cutture!D nichar - 6
Description Description nvarchar - 400
Source column ProductiD int NOT NULL
0K Cancel

FIGURE 3-6 Column mappings.

Lesson 1: Using the SQL Server Import and Export Wizard

96

8. When you are done, click OK to close the Column Mappings window; if you have made
any changes to the table definition, click Cancel because no changes are necessary for
this exercise. On the Select Source Tables And Views page, click Next.

9. On the next page, shown in Figure 3-7, you can decide whether to run the package,
save it for later, or even do both. Make sure the Run Immediately check box is selected,
and also select the Save SSIS Package check box. Then select File System as the desti-
nation for the newly created package. Under Package Protection Level, select Do Not
Save Sensitive Data. Then click Next.

B sqL server Import and Export Wizard =13l x|

Save and Run Package
Indicate whether to save the 5515 package.

[+ Run immediately
¥ Save S5IS Package
" 5@ Server

% File system

Package protection level:

Password: I

Retype password: |

Help | <Back [Net> it Cancel |

FIGURE 3-7 Saving and running the package.

4

10. On the next page, shown in Figure 3-8, name your package (TK463_IEWizard),
provide a description for it if you want (for example, Copy AdventureWorks2012
Product data to a new database), and name the resulting SSIS package file
(C:\TK463\Chapter03\Lesson1\TK463_IEWizard.dtsx). When ready, click Next.

11. On the next page, shown in Figure 3-9, you can review the actions that will be per-
formed when the package is executed. When ready, click Next.

Creating SSIS Packages

Save SSIS P
fou can save the SSIS package for reuse. You must save the package to schedule it for
later execution.

'_ SQL Server Import and Export Wizard i [

Name: [Tk463_IEWizard

Description: ICopy AdvertureWorks2012 Product datato a new database
Target File System

File name:

|C:\TK4ES\O13Merﬂ3\Lesson'l\TK4€3JEWizard.dt5x Browse... |

Help <gack |[Next> | Einish>sl Cancel |

4

FIGURE 3-8 Saving the SSIS package.

Complete the Wizard

erify the choices made in the wizard and click Finish.

'_ SQL Server Import and Export Wizard i [

Click Finish to p the ing

Source Location : {local)

Source Provider : SQLNCLIT1
Destination Location : {local)
Destination Provider : SQLNCLITT

» Copy rows from [Production].[vProduct And Description] to [Production].[Product And Description]
The new target table will be created.

» Copy rows from [Production].[v Product ModelInstructions] to [Production].[Product Model Instructions]
The new target table will be created.

» The package wil be saved to the package file "C\TK463'\Chapterl3'Lesson 1" TK463
_IEWizard dtsx"
» The package wil be run immediately.

Help < Back | Iext > | Finish I Cancel |

4

FIGURE 3-9 Completing the wizard.

Lesson 1: Using the SQL Server Import and Export Wizard

97

12. To execute the package, click Finish.

13. A new page appears, as shown in Figure 3-10, displaying the progress and finally the
results of the execution. Close the wizard when you're done.

'_SQLServerlmportand Export Wizard = Ellll
The execution was successful “

13 Total 0 Error
@ Success 13 Success 0 ‘warning
Details:
| Action I Status I Message I

@ Initiglizing Data Flow Task Success

@ Initiglizing Connections Success

@ Setting SQL Command Success

@ Setting Source Connection Success

@ Setting Destination Connection Success

@ Validating Success

@ Saving Success

@ Prepare for Execute Success

@ Pre-executs Success

@ Executing Success

(i) Copying to [Production].[Product AndDescription] = Success 1764 rows transfered
(i) Copying to [Production].[ProductModellnstructi... | Success 131 rows transfemred
@ Postexecute Success

FIGURE 3-10 The execution.

EXERCISE 2 View SSIS Package Files
1. Open Windows Explorer and navigate to the C:\TK463\Chapter03\Lessonl folder,
where you saved the SSIS package file created in Exercise 1.
You will now view the contents of this file.
2. Right-click the TK463_IEWizard.dtsx file and select Open With from the shortcut menu.
Click Choose Default Program, and in the Open With dialog box, under Other Programs,

select Notepad. Clear the Always Use The Selected Program To Open This Kind Of File
check box.

You should not change the default program used to open SSIS package files!
3. When ready, click OK, to open the file.

4. If needed, maximize the Notepad window, and then review the file contents.

SSIS package files are implemented as XML documents and can be modified, if needed,
even if SSDT is not available.

Creating SSIS Packages

EXAM TIP

Even though this may not be apparent from the file name, SSIS package definitions are

stored in XML format and can be reviewed and edited with most text editing tools.

7.

Of course, you should not edit SSIS package files manually unless you are familiar with
their structure, because you might end up damaging them beyond repair.

When done, close Notepad, abandoning any changes.

Return to Windows Explorer, and double-click the TK463_IEWizard.dtsx file to open

it using the default program, the Execute Package Utility. This utility can be used to
configure and execute SSIS packages. The utility cannot be used to make permanent
changes to SSIS packages. You will learn more about this utility in Chapter 12, "Execut-
ing and Securing Packages.”

When done, click Close to close the package file without executing it.

Close Windows Explorer.

Lesson Summary

The SQL Server Import and Export Wizard can be used for simple data movement
operations.

The wizard allows you to create the destination database.
Multiple objects can be transferred in the same operation.
If the destination objects do not already exist, they can be created by the process.

The SSIS package created by the wizard can be saved and reused.

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1.

You need to move data from a production database into a testing database. You need
to extract the data from several objects in the source database, but your manager

has asked you to only copy about 10 percent of the rows from the largest production
tables. The testing database already exists, but without any tables. How would you ap-
proach this task?

A. Use the Import and Export Wizard, copy all tables from the source database to the
empty destination database, and delete the excess rows from the largest tables.

B. Use the Import and Export Wizard multiple times—once for all the smaller tables,
and once for each large table, using the Write A Query To Specify The Data To
Transfer option to restrict the rows.

Lesson 1: Using the SQL Server Import and Export Wizard 929

100

C. Use the Import and Export Wizard, copy all tables from the source database to the
empty destination database, and restrict the number of rows for each large table
by using the Edit SQL option in the Column Mappings window.

D. Use the Import and Export Wizard, configure it to copy all tables from the source
database to the empty destination database, save the SSIS package, and then,
before executing it, edit it by using SSDT to restrict the number of rows extracted
from the large tables.

You need to move data from an operational database into a data warehouse for the
very first time. The data warehouse has already been set up, and it already contains
some reference data. You have just finished preparing views in the operational data-
base that correspond to the dimension and fact tables of the data warehouse. How
would you approach this task?

A. Use the Import and Export Wizard and copy data from the dimension and fact
views in the operational database into the tables in the data warehouse, by using
the Drop And Re-create The Destination Table option in the Column Mappings
window for every non-empty destination table.

B. Use the Import and Export Wizard, configure it to copy data from the dimension
and fact views in the operational database into the tables in the data warehouse,
save the SSIS package, and then edit it by using SSDT to add appropriate data
merging functionalities for all destination tables.

C. Use the Import and Export Wizard and copy data from the dimension and fact
views in the operational database into the tables in the data warehouse, by using
the Merge Data Into The Destination Table option in the Column Mappings win-
dow for every non-empty destination table.

D. Use SSDT instead of the Import and Export Wizard, because the wizard lacks ap-
propriate data transformation and merging capabilities.

When SSIS packages are saved to DTSX files, what format is used to store the SSIS
package definitions?

A. They are stored as binary files.
B. They are stored as plain text files.
C. They are stored as XML files.

D. They are stored as special Microsoft Word documents.

Creating SSIS Packages

Lesson 2: Developing SSIS Packages in SSDT

The ability to modify (transform) data before it can be stored at the destination, and the
ability to merge the new or modified data appropriately with existing data are not available
in the SQL Server Import and Export Wizard; therefore, the wizard is not really suitable for
complex data movement scenarios.

Nevertheless, one could, for instance, use the wizard to design an SSIS package in minutes,
test it, and deploy it so that the data warehouse could be deployed as soon as possible, and
then later use the SQL Server Data Tools (SSDT) to add any missing functionalities in order to
improve the reusability and manageability of the solution.

On the other hand, data warehousing scenarios do not generally count among projects to
which rapid solution development is paramount; in the majority of cases, data warehousing
projects require a lot of research and planning before it would even be reasonable to do any
actual development, with the goal of providing a complete, production-ready data move-
ment solution. By the time the planning phase is completed, an early and quickly developed
data movement process would probably already have become obsolete and would have to be
modified significantly for production. It is therefore unlikely that the benefits of early deploy-
ment would outweigh the need to revise and possibly redesign the data movement process
after the design of the data warehouse has actually matured enough for production.

In other words, SSIS development would usually be done “from scratch”"—using SSDT
instead of the Import and Export Wizard; but this prospect alone does not render the wizard
useless.

SSIS uses a special declarative programming language—or rather, a special programming
interface—to define the order and conditions of operations’ execution. With a strong em-
phasis on automation, DW maintenance applications differ from the majority of applications
in that they do not support user interfaces. Monitoring, inspection, and troubleshooting are
provided through auditing and logging capabilities.

Techniques used in SSIS design and development may differ significantly from other pro-
gramming techniques, appearing especially different to database administrators or develop-
ers who are more accustomed to other programming languages (such as Transact-SQL or
Microsoft .NET). Most of SSIS development is done graphically—using the mouse, rather than
by typing in the commands using the keyboard. A visual approach to design not only allows
you to configure the operations, define their order, and determine under what conditions
they will be executed, but it also provides a WYSIWYG programming experience.

After they have been deployed, SSIS solutions are usually executed automatically—for
example, when using SQL Server Agent—but they can also be invoked on demand, by using
utilities provided by the platform or through an application programming interface (API).

Lesson 2: Developing SSIS Packages in SSDT 101

After this lesson, you will be able to:
m Navigate the SQL Server Data Tools integrated development environment.

m Use SQL Server Data Tools to create SQL Server 2012 Integration Services
projects.

Estimated lesson time: 20 minutes

Introducing SSDT

SSDT is a special edition of Visual Studio, which is Microsoft's principal integrated develop-
ment environment. SSDT supports a variety of SQL Server development projects, such as SQL
Server Analysis Services Multidimensional and Data Mining projects, Analysis Services Tabular
projects, SQL Server Reporting Services Report Server projects, and Integration Services (SSIS)
projects. For all of these project types, SSDT provides a complete integrated development
environment, customized specifically for each particular project type.

For Integration Services projects, SSDT provides an entire arsenal of data management
tasks and components covering pretty much any data warehousing need (a variety of data
extraction, transformation, and loading techniques). Nonetheless, in the real world, you could
eventually encounter situations for which none of the built-in tools provide the most appro-
priate solution. Fortunately, the SSIS development model is extensible: the built-in tool set
can be extended by adding custom tasks and/or custom components—either provided by
third-party vendors or developed by you.

NOTE SQL SERVER BUSINESS INTELLIGENCE STUDIO

In versions of SQL Server prior to SQL Server 2012, the special edition of Visual Studio went
by the name SQL Server Business Intelligence Development Studio, or BIDS. In general, the
earlier version provides the same kind of experience from a usability perspective—with the
obvious exception of the functionalities that do not exist in the previous version of the tool.

(Quick Check
m What is SSDT?

Quick Check Answer

m SQL Server Data Tools (SSDT) is a special edition of Visual Studio used for devel-
oping SQL Server 2012 solutions, such as SSIS packages, SSAS multi-dimensional
models, and SSRS reports.

102 Creating SSIS Packages

Getting Started with SSDT

In this practice, you will become familiar with SSDT and have an opportunity to take your first
steps in SQL Server 2012 Integration Services solution development.

Compared to the Import and Export Wizard, which you worked with earlier in this chapter,
SSIS development in SSDT might at first glance seem like a daunting task; although the wizard
does provide a very straightforward development path from start to finish, the overall experi-
ence of SSDT is by far superior, as you will soon discover.

The wizard guides you quickly toward results, but SSDT provides you with a complete and
clear overview of the emerging solution and unimpeded control over the operations.

If you encounter a problem completing this exercise, you can install the completed proj-
ects that are provided with the companion content. These can be installed from the Solution
folder for this chapter and lesson.

EXERCISE 1 Create a New SSIS Project

In this exercise, you will familiarize yourself with the SSDT integrated development environ-
ment (IDE), create a new SSIS project, and explore the SSIS development tool set.

1. Start the SQL Server Data Tools (SSDT): On the Start menu, click either All Programs
| Microsoft SQL Server 2012|SQL Server Data Tools or All Programs | Microsoft Visual
Studio 2010 | Visual Studio 2010.

2. Create a new project, either by clicking New Project on the Start Page, via the menu
by clicking File | New | Project, or by using the Ctrl+Shift+N keyboard shortcut.

3. Inthe New Project window, shown in Figure 3-11, select the appropriate project
template. Under Installed Templates | Business Intelligence | Integration Services,
select Integration Services Project.

4. At the bottom of the New Project window, provide a name for the project and the
location for the project files. Name your project TK 463 Chapter 3, and set the C:\
TK463\Chapter03\Lesson2\Starter folder as the project location. Also, make sure
that the Create Directory For The Solution check box is not selected, because a sepa-
rate folder for the solution files is not needed. Click OK when ready.

5. After the new project and solution have been created, inspect the Solution Explorer
pane on the upper-right side of the IDE, as shown in Figure 3-12. The project you
just created should be listed, and it should contain a single SSIS package file named
Package.dtsx.

The Solution Explorer pane provides access to solution and project properties and
the objects they contain; SSIS projects contain at least one SSIS package. Project-level
connection managers and project parameters can be accessed through the Solution
Explorer pane.

Lesson 2: Developing SSIS Packages in SSDT

103

104

I .NET Framework 4

Installed Templates

Integration Services Project

= Business Intelligence
Analysis Services
Integration Services
Reporting Services
SQL Server
Other Project Types

Online Templates

Search Instaled Templates S

j Sortby: IDefauIt j

\@ Integration Services Import P...Business Inteligence

Type: Business Inteligence

This project may be used for building high
performance data integration and workflow
solutions, induding extraction, transformation,
and loading (ETL) operations for data
warehousing.

Business Inteligence

Mame: |TK 463 Chapter 3

Location: IC:\W%S\Chapterﬂilessunz\imrter

;I Browse... |

| 463 Chapter 3

Solution name:

FIGURE 3-11 Creating a new project.

==l x|

Solution Explorer

BE:
4 TK 463 Chapter 3

i Project.params

|Z¢ Connection Managers
=l [5515 Packages
I8 Fackage. disx
[Miscellaneous

3] Solution Explorer

File Name Package.dtsx
Full Path C:\TK463\Chapter03iLesq

FIGURE 3-12 Solution Explorer.

Creating SSIS Packages

™ Create directory for solution

6. Save the solution, but keep it open, because you will need it in the following exercise.

NOTE PROJECTS AND SOLUTIONS
The solution itself is not displayed in the Solution Explorer if it only contains a single
project, as is the case in this exercise.

You can configure SSDT (or any other edition of Visual Studio) to always display the
solution by selecting the Always Show Solution check box in SSDT (or Visual Studio)
Options (accessible through the Tools menu), under Projects And Solutions | General.

EXERCISE 2 Explore SSIS Control Flow Design

1. Inthe Solution Explorer pane, double-click the Package.dtsx package to open the
Control Flow designer.
The largest part in the middle of the IDE window is reserved for SSIS package control
flow and data flow design.

2. On the left of the SSDT IDE, you can find the SSIS Toolbox, shown in Figure 3-13. In the
context of the SSIS package, the SSIS Toolbox lists control flow tasks, allowing you to
create and configure the control flow for the SSIS package.

TK 463 Chapter 3 - Microsoft Visual 5
File Edit View Project Build Debug

PGl d

Cu

EEE] j|) -

5515 Toolbox v 11X

“
(5 Data Flow Task
| i3 Execute SQL Task

4 Common
% Analysis Services Processing Task
| 5] Bulk Insert Task
Z] Data Profiling Task
&1, Execute Package Task
] Execute Process Task
Jfe Expression Task
41 File System Task
@ FTP Task
;“? Script Task
[=F] Send Mail Task
@ Web Service Task
@ XML Task
4 Containers
ﬂ For Loop Container
;_'l Foreach Loop Container
E Sequence Container

» Other Tasks

I ~ | Favorites i"l

FIGURE 3-13 The SSIS Toolbox in the context of an SSIS package.

Lesson 2: Developing SSIS Packages in SSDT

105

Take a minute to explore the toolbox; for now, simply browse through the control flow
tasks. You will learn more about them in Chapter 4, “Designing and Implementing
Control Flow.”

3. Drag the data flow task from the SSIS Toolbox onto the SSIS control flow designer
pane, as shown in Figure 3-14.

Studio (Administrator)
Data Format SSIS Tools Window Help

S [[oeviomers]| 75 50 BB 1 -

el

#,. Control... |[5 Data Flow |¢ Parame. .. | # Event... |“: Packag... \/l _~=;3|

| = | Data Flow Task

!

FIGURE 3-14 The SSIS package pane with a Data Flow Task.

4. Double-click the data flow task, or select the Data Flow tab at the top of the SSIS pack-
age pane, to access the data flow definition. A newly created data flow task contains
no components; however, the contents of the SSIS Toolbox have changed, as shown in
Figure 3-15.

Take another minute to explore the Toolbox; for now, simply browse through the data
flow components. You will learn more about them in Chapter 5, “Designing and Imple-
menting Data Flow.”

5. When you are finished, save the SSIS project and close SSDT.

106 Creating SSIS Packages

TK 463 Chapter 3 - Microsoft Visual 5
File Edit View Project Build Debug

E.éﬂ'lﬂﬂ|:‘3 —'_1_._‘_l‘||“’1 -

P

>

1
P00

7

[

o

]

5515 Toolbox v 11X
4

4 Destination Assistant

Source Assistant

4 Common

Aggregate
Conditional Split
Data Conversion
Derived Column
Lookup

Merge

Merge Join
Multicast

OLE DB Command
Fow Count

Script Component

Lﬁ Slowly Changing Dimension

Sort
Union Al

¥ Other Transforms
¥ Other Sources
¥ Other Destinations

I ~ | Favorites

a

FIGURE 3-15 SSIS Toolbox in the context of a data flow task.

Lesson Summary
m SSIS projects are developed by using SSDT, a specialized version of Visual Studio.

m SSDT provides the complete integrated development environment (IDE) required for

efficient development of SSIS packages.

m The SSIS toolbox is context-aware and will either allow you access to control flow tasks
or data flow components, depending on whether you are designing the control flow or

the data flow.

Lesson 2: Developing SSIS Packages in SSDT

107

108

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1.

Which statements best describe SQL Server Development Tools (SSDT)? (Choose all
that apply.)

A.

SSDT is an extension of the SQL Server Management Studio that can be used to
create SSIS packages by means of a special wizard.

SSDT is a special edition of the SQL Server Management Studio, designed to pro-

vide an improved user experience to developers who are not particularly familiar
with database administration.

SSDT is a special edition of Visual Studio, distributed with SQL Server 2012, provid-
ing a rich database development tool set.

SSDT is a new service in SQL Server 2012 that can be used to perform SQL Server
maintenance tasks, such as data movements and similar data management pro-
cesses.

Which of the following statements about simple and complex data movements are
true? (Choose all that apply.)

A.

Simple data movements only have a single data source and a single data
destination.

Complex data movements require data to be transformed before it can be stored
at the destination.

In simple data movements, data transformations are limited to data type
conversion.

In complex data movements, additional programmatic logic is required to merge
source data with destination data.

Which of the following statements are true? (Choose all that apply.)

An SSIS package can contain one or more SSDT solutions, each performing a
specific data management operation.

An SSIS project can contain one or more SSIS packages.
An SSIS project can contain exactly one SSIS package.

SSIS packages contain programmatic logic used in data movements and data
transformation operations.

Creating SSIS Packages

Lesson 3: Introducing Control Flow, Data Flow, and
Connection Managers

Before you dive into SSIS development, you should be familiar with three essential elements
of every SSIS package:

m Connection managers Provide connections to data stores, either as data sources or
data destinations. Because the same data store can play the role of the data source as
well as the data destination, connection managers allow the connection to be defined
once and used many times in the same package (or project).

m Control flow Defines both the order of operations and the conditions under which
they will be executed. A package can consist of one or more operations, represented
by control flow tasks. Execution order is defined by how individual tasks are connected
to one another. Tasks that do not follow any preceding task as well as tasks that follow
the same preceding task are executed in parallel.

m Data flow Encapsulates the data movement components—the ETL:

m One or more source components, designating the data stores from which the data
will be extracted

m One or more destination components, designating the data stores into which the
data will be loaded

m One or more (optional) transformation components, designating the transforma-
tions through which the data will be passed

EXAM TIP

Never confuse the control flow with the data flow. Control flow determines the operations
and the order of their execution. Data flow is a task in the control flow that determines the
ETL operation.

The role of connection managers is to provide access to data stores, either as data sources,
data destinations, or reference data stores. Control flow tasks define the data management
operations of the SSIS process, with the data flow tasks providing the core of data warehous-
ing operations—the ETL.

After this lesson, you will be able to:
m Determine the control flow of an SSIS package.

m Plan the configuration of connection managers.

Estimated lesson time: 40 minutes

Lesson 3: Introducing Control Flow, Data Flow, and Connection Managers

109

110

Introducing SSIS Development

The integrated development environment (IDE) of SSDT provides a unified and comprehensive
approach to database development; Analysis Services, Reporting Services, and Integration
Services solutions are all serviced by the same IDE, with obvious and necessary customiza-
tions to account for the differences between individual development models.

Even as far as Integration Services solutions are concerned, an SSIS project in its entirety
might be more than just a single data movement (and it usually is, quite a lot more). The IDE
provides the ability to develop, maintain, and deploy multiple data management processes
that in the real world constitute the same complete logical unit of work as one project.

To top that, typically in data warehousing scenarios data movements actually represent
just one of several elements of the data acquisition, maintenance, and consumption required
to support a business environment. This business need is also fully supported by the SSDT
IDE—multiple projects, targeting multiple elements of the SQL Server platform, representing
the building blocks of a single business concept, can be developed and maintained as one
SSDT solution.

Even though the focus of this chapter is on SSIS development, you should be aware of the
larger scope of your work, and plan your development activities accordingly. As you continue
on your way through this book, and through data warehouse development, you will gradually
begin to realize just how broad this scope really is.

Earlier in this chapter, you developed an SSIS solution—you used a specialized tool, which
guided you pretty much straight through all the essential steps of an SSIS development
process. By the end of this chapter, you will be able to perform all of these steps on your own,
without a wizard to guide you, and after completing this and the following two chapters, you
will have learned enough to take on most of what is typically required of an SSIS developer
out there, in the real world.

Introducing SSIS Project Deployment

To ensure the isolation of development and testing activities from production operations, SSIS
solution development should be performed in dedicated development environments, ideally
without direct access to the production environment. Only after the development has been
completed and the solutions properly tested should the resulting SSIS packages be deployed
to the production environment.

However, even in the planning and development phases, you should not only be aware of
the differences between the development and the production environments, but also account
for them before even attempting deployment.

Creating SSIS Packages

Typically, the principal difference between development and production environments is
in the configuration of data stores. In development, all data can reside on the same server
(even in the same database). In fact, because for development a subset of data is usually all
that is needed (or available) to the developer, all stored development data could easily be
placed on the developer’s personal computer. Therefore, you should account for the follow-
ing differences between the development and the production environments when develop-
ing SSIS solutions:

m Connections In production, source and destination data stores would, more often
than not, be hosted on different servers.

m Data platforms Production versions of the data platforms might be different from
the ones used in the development environment (for example, SQL Server 2012 might
be used for development, but SQL Server 2008 in production), or the environments
could even be on different platforms altogether (for example, SQL Server for develop-
ment, and another DBMS for production).

m Security Generally, a development machine does not need to be part of the same
operating system domain as the production servers. Furthermore, the production serv-
ers hosting the source or the destination data store could exist in separate domains.

In previous versions of SQL Server, it was possible to configure SSIS packages by using a
configuration file or by storing the configuration data in a table. However, the deployment
and maintenance of these configurations proved to be quite a cumbersome task and did
not provide very good user experience. In SQL Server 2012, the configuration feature is ef-
fectively replaced with parameterization, which essentially provides the same functionalities
(for instance, the ability to control all of the exposed properties of any configurable object
in an SSIS package via the configuration, allowing the administrator to configure the pack-
age in compliance with the environment it is being deployed to). The implementation of SSIS
parameterization provides a far superior deployment and maintenance experience compared
to SSIS configurations. SSIS parameterization will be discussed in more detail in Chapter 4 and
Chapter 11, “Installing SSIS and Deploying Packages.”

EXAM TIP

SSIS parameterization represents a vital element of SSIS development; its principal role
might not be apparent until the SSIS solution is deployed, but it must be considered from
the very start of development.

Lesson 3: Introducing Control Flow, Data Flow, and Connection Managers

111

112

¥ Quick Check

1. What is a control flow?

2. What is a data flow?

Quick Check Answers

1. In SSIS packages, the control flow defines the tasks used in performing data
management operations; it determines the order in which these tasks are ex-
ecuted and the conditions of their execution.

2. In SSIS packages, the data flow is a special control flow task used specifically in
data movement operations and data transformations.

Modifying an Existing Data Movement

In Lesson 1 of this chapter, you created a data movement solution using the Import and
Export Wizard, the result of which was an SSIS package that you saved as a file to the file sys-
tem. In Lesson 2, you received an introduction to the SSDT integrated development environ-
ment, specifically the SSIS development template (the Integration Services project), and you
took a first glance at the SSIS development tool set provided by SSDT.

It has been mentioned several times in this chapter that SSIS packages created by the Im-
port and Export Wizard can be reused and edited by using SSDT; in this third lesson, you will
import the SSIS package created in the first lesson into the SSIS project created in the second
and modify it with a very important objective in mind: to improve its reusability. You will
review the data connections used by the SSIS project and prepare their configuration in order
to ensure successful deployment and use in production.

If you encounter a problem completing an exercise, you can install the completed projects
from the Solution folder that is provided with the companion content for this chapter and
lesson.

EXERCISE 1 Add an Existing SSIS Package to the SSIS Project

1. Navigate to the C:\TK463\Chapter03\Lesson3\Starter\TK 463 Chapter 3 folder in the file
system and open the TK 463 Chapter 3.sIn solution. This solution is the same as the one
you completed in Lesson 2.

2. Inthe Solution Explorer, right-click the project nodes. Then, in the shortcut menu,
under Add, click Existing Package, as shown in Figure 3-16.

Creating SSIS Packages

==l x]
P EH. b1~ o
Solution Explorer * 01X
=S
@5 TK 463 Chapter 3
Deplay i Project.params
Build [£5 Connection Managers
? | 5515 Packages
I | Package.disx
Add »] NewItem... Ctrl+Shift+A
Debug v |] Esisting Package
Convert to Package Deployment Model (%] Exdsting Item... Shift-+Alt-+A
% cut Cirl+x
1 Paste Cirl+V
Rename
Properties

FIGURE 3-16 Adding an existing package to the SSIS project.

In the Add Copy Of Existing Package dialog box, shown in Figure 3-17, make sure that

File System is selected as the package location, then click the ellipsis button (...) at the

bottom of the dialog box. The Load Package dialog box appears. Use it to navigate to

the location of the SSIS package you created in Lesson 1: C:\TK463\ChapterO3\Lessonl.
If for some reason the package is not available, there should be a copy in the C:\TK463
\Chapter03\Lesson1\Solution folder.

Add Copy of Existing Package =
Specify the location of the package to be added.
Package location: IFiIe System j
Server: I j
Authentication
Authentication type: I'\-'-;'indo'f\'s Authentication j
User name: I
Password: I
Package path: IC: \TK463\Chapter03\Lesson 11TK463_IEWizard. disx I
OK Cancel | Help |
4

FIGURE 3-17 Adding a copy of an existing package.

Lesson 3: Introducing Control Flow, Data Flow, and Connection Managers 113

4. Select the TK463_IEWizard.dtsx file, click Open, and then click OK. After a few
moments, the Solution Explorer should list the newly added package, as shown

in Figure 3-18.

==l x|

Solution Explorer

4 TK 463 Chapter 3
i Project.params
|Z¢ Connection Managers

=l [5515 Packages

. Package.dtsx

3] Solution Explorer

FIGURE 3-18 The SSIS project with multiple SSIS packages.

5. Save the SSIS solution, but keep it open, because you will need it in the next exercise.

EXERCISE 2 Edit the SSIS Package Created by the SQL Server Import
and Export Wizard

1. Open the TK463_IEWizard.dtsx package by double-clicking it in the Solution Explorer.

2. Review the control flow of the package. It should contain two tasks: an Execute SQL
Task named Preparation SQL Task 1, and a data flow task named Data Flow Task 1, as

shown in Figure 3-19.

L - Preparation SQL Task 1

—]

| = | Data Flow Task 1

FIGURE 3-19 The control flow of the SSIS package created in Lesson 1.

114 Creating SSIS Packages

3.

Double-click (or right-click) Preparation SQL Task 1, and in the shortcut menu select
Edit to open the Execute SQL Task Editor. As shown in Figure 3-20, the editor provides
access to the Execute SQL Task's settings used in configuring the operation.

& Execute SQL Task Editor

| ! Ly connection.

=0l x|

| Configure the properties required to run SQL statements and stored procedures using the selected

Q ed False

BypassPrepare True

Preparation SQL Task 1

General E General
Parameter Mapping MName
Result Set Description
Expressions E Options
TimeOut 0
CodePage 1252
TypeConversionMode Allowed
E Result Set
ResultSet None
Bl SQL Statement
ConnectionType OLE DB
Connection DestinationConnectionOLEDB

SQLSourceType Direct input
IF NOT EXISTS(SELECT * FROM .|

| v

-

SQLStatement
Spedifies the query to be run by the task.

Browse. .. | Build Query...

o]

Help |

4

FIGURE 3-20 The Execute SQL Task Editor.

You will learn more about this task in Chapter 4; in this exercise, you just need to re-

view the SQL statement.

To see the entire definition, click the ellipsis button inside the value box of the SQL-
Statement property. Resize the script editor dialog box, shown in Figure 3-21, for bet-

ter readability, and review the T-SQL script.

As you can see, the task will attempt to create two tables without checking first to see
whether they already exist. The failure will not affect the destination database; it will,

however, affect the execution of the SSIS package, causing it to fail.

Lesson 3: Introducing Control Flow, Data Flow, and Connection Managers

115

116

=TT

IF NOT EXISTS(SELECT * FROM sys.schemas WHERE name = ;I
N'Production’)

BEGIN

EXEC{NCREATE SCHEMA [Production])

END

CREATE TABLE [Production].[Product And Description] (
[ProductID]int NOT MULL,

[Name] nvarchar(50) NOT MULL,

[Product Model] nvarchar(50) NOT NULL,

[CutturelD] nchar(B) NOT NULL,

[Description] nvarchar{400) NOT NULL

I

GO

CREATE TABLE [Production].[Product ModelInstructions] (
[ProductModelID] int NOT MULL,
[Name] nvarchar(50) NOT MULL,
[Instructions] nvarcharima),
[Location|D] int,

[SetupHours] decimal(9.4).
[MachineHours] decimal(9.4).
[LaborHours] decimal(3.4),

[LotSize] int,

[Step] nvarchar(1024),

[rowguid] uniqueidentifier NOT NLULL,
[ModifiedDate] datetime NOT NULL

Go
| E
ok | Cancel
INc |%

FIGURE 3-21 T-SQL script generated by the Import and Export Wizard.

Close the SQL Statement script editor dialog box by clicking Cancel. For the purposes
of this exercise, the code does not need to be modified in any way.

Close the Execute SQL Task Editor window by clicking Cancel once more.

Right-click Preparation SQL Task 1 and select Properties on the shortcut menu. In the
lower right of the IDE, you can see the Properties pane, displaying additional settings
for the selected object—in this case, the Execute SQL Task. Find the FailPackageOn-
Failure setting and make sure its value is False, as shown in Figure 3-22.

3] solution Explorer

Properties > 1 x

Preparation SQL Task 1 Task -

=gl |o

=] -
DelayValidation False
Disable False
DisableEventHandlers False
FailPackageOnFailure 15 ;I
FailParentOnFaiure False
MaximumErrorCount 1 —

FailPackageOnFailure

Indicates whether the package fails when the
executable fails.

FIGURE 3-22 The Execute SQL Task properties.

Creating SSIS Packages

10.

11.

12.

This will prevent the possible (or rather, probable) failure of Preparation SQL Task 1
from failing the entire SSIS package.

REAL WORLD (DIS)ALLOWING FAILURE

The purpose of the workaround used in this exercise is to illustrate a point. In actual
development work, you should be very careful about when to ignore the failure of
individual operations. Focus on preventing failure, rather than exposing your solutions
to unpredictability.

Select the precedence constraint (the arrow) leading from Preparation SQL Task 1 to
Data Flow Task 1. Press Delete on the keyboard or right-click the constraint and select
Delete to remove the constraint.

Precedence constraints are discussed in more detail in Chapter 4.

From the SSIS Toolbox, drag another Execute SQL Task onto the control flow pane.
Double-click the newly added task, or right-click it and then select Edit, to open the
Execute SQL Task Editor. Configure the task by using the information in Table 3-1.

TABLE 3-1 Execute SQL Task Properties

Property Value

Name Preparation SQL Task 2
ConnectionType OLE DB

Connection DestinationConnectionOLEDB
SQLSourceType Direct input

Click the ellipsis button inside the value box of the SQLStatement property to edit the
SQLStatement, and type in the statements from Listing 3-1.

LISTING 3-1 Truncating Destination Tables

TRUNCATE TABLE Production.ProductAndDescription;
TRUNCATE TABLE Production.ProductModelInstructions;

Optionally, you can copy and paste the statements from the TK463Chapter03.sql file,
located in the C:\TK463\Chapter03\Code folder. Click OK when you are done editing
the statements.

When you have finished configuring the task as defined in steps 10 and 11, confirm the

changes by clicking OK. Figure 3-23 shows the configured Preparation SQL Task 2.

Lesson 3: Introducing Control Flow, Data Flow, and Connection Managers

117

118

13.

14.

f_Q Execute SQL Task Editor _ ||:||1|

| Configure the properties required to run SQL statements and stored procedures using the selected
| ! .y connection,

General E General 1=
Parameter Mapping Mame Preparation SQL Task 2
Result Set Description Execute SQL Task
Expressions E Options
TimeOut 0
CodePage 1252
TypeConversionMode Allowed
E Result Set
ResultSet None
Bl SQL Statement
ConnectionType OLE DB
Connection DestinationConnectionOLEDB
SQLSourceType Direct input
SQLStatement TRUNCATE TABLE Production.P .,
False
BypassPrepare True -
SQLStatement
Spedifies the query to be run by the task.

Browse. .. | Build Query... | Parse Query |

OK I Cancel | Help |

4

FIGURE 3-23 Preparation SQL Task 2.

Select Preparation SQL Task 1. A tiny arrow should appear below it. Drag the arrow
over to Preparation SQL Task 2, and then release it to create a precedence constraint
between the two tasks, as shown in Figure 3-24.

L - Preparation SQL Task 1

]

— L - Preparation SQL Task 2
)

| = | Data Flow Task 1

FIGURE 3-24 Creating a precedence constraint.

Double-click the precedence constraint you just created, or right-click it and select
Edit. In the Precedence Constraint Editor, shown in Figure 3-25, you can configure the
conditions of the SSIS package execution.

Creating SSIS Packages

Precedence Constraint Editor =

A precedence constraint defines the workflow between two executables. The precedence
constraint can be based on a combination of the execution results and the evaluation of
EXPressions,

— Constraint options
Evaluation operation: IConsh’aint j

Value:

Expression:

—Multiple constraints

If the constrained task has multiple constraints, you can choose how the constraints
interoperate to control the execution of the constrained task.

' Logical AND. All constraints must evaluate to True

" Logical OR. One constraint must evaluate to True

OK I Cancel Help

FIGURE 3-25 The Precedence Constraint Editor.

15. Review the options available for the constraint, make sure that Constraint is selected
as the evaluation operation, and then select Completion as the new value, as shown in
Figure 3-25. Confirm the change by clicking OK.

NOTE EVALUATION OPERATIONS
Precedence constraints are not the only available technique that can be used to control
the conditions of SSIS execution. Additional techniques are discussed in Chapter 6,

“Enhancing Control Flow.”

16. Select Preparation SQL Task 2, and connect it to Data Flow Task 1 with a new prece-
dence constraint. Leave the constraint unchanged. Figure 3-26, shows the amended

control flow.

L Preparation SQL Task 1

o—]

Comgletion

v
L - Preparation SQL Task 2

o—]

| = | Data Flow Task 1

FIGURE 3-26 Modified control flow.

Lesson 3: Introducing Control Flow, Data Flow, and Connection Managers 119

120

17. Double-click Data Flow Task 1, or right-click it and select Edit, to view its definition, as

shown in Figure 3-27.

l__l‘ Source - vProductAndDescription l._|* Source 1 - vProductModelInstructions

| |‘ Destination - ProductdndDescription | |‘ Destination 1 - ProductModelInstructions

FIGURE 3-27 The definition of Data Flow Task 1.

You can observe two data flows, extracting the data from two views in the source
database and loading it into two tables in the destination database.

For now, simply observe the data flow definition. You will learn more about data flow
programming in Chapter 6.

REAL WORLD COMBINING VS. ISOLATING DATA FLOWS

In practice, you will rarely see multiple data flows sharing the same data flow task.
Although it may seem logical to place data flows that constitute the same logical unit

into a single data flow task, it might be more appropriate for maintenance and auditing
purposes to place each data flow into its own data flow task.

When done, return to the control flow view by selecting Control Flow at the top of the
SSIS package editor.

18. Save the SSIS project, but keep it open, because you will need it in the next exercise.

EXERCISE 3 Configure the Connections and Run the SSIS Package in Debug Mode

At the bottom of the SSDT IDE, locate the Connection Managers pane, which provides

access to the connection managers used by your SSIS package. There should be two
connection managers, as shown in Figure 3-28.

Connection Managers |

DestinationConnectionJLEDB J SourceConnectionOLEDB

ﬂ: Error List B Output @ Variables

FIGURE 3-28 The Connection Managers pane.

Both connection managers were created by the Import and Export Wizard that you
used in Lesson 1 of this chapter.

Creating SSIS Packages

2.

Double-click the SourceConnectionOLEDB connection manager icon, or right-click

it and then select Edit, to open the connection manager editor. This editor provides
access to the connection manager settings; depending on the type of connection, dif-
ferent variants of the editor are available. The connection managers in this project use
the OLE DB data provider.

Review the connection properties, as shown in Figure 3-29, and think about which of
them would have to be modified for production (Provider, Server Name, authentica-
tion, and/or database name).

K Connection Manager ll
Provider: |Native OLE DB\SQL Server Native Client 11.0 =l

LQ Server name:
= 7| Refresh |

Connection

Log on to the server

5_%‘ % Use Windows Authentication

.J;I.I Use SQL Server Authentication

User: marme: I

Eassword: I

I | 5ave my. password

r~Connect to a d

* Select or enter a database name:
IAdvenb.lre\“a’orksZD 12 j

" Attach a database file:

I Erowse, .. |

Logical mame;

Test Connection | OK I Cancel Help

FIGURE 3-29 The OLE DB connection manager.

Here, if you want, you can select the All tab to view more settings and think about
what others you have used in the past that would also differ between development
and production. This is especially useful if you have worked with SSIS (or Data Transfor-
mation Services) in earlier versions of SQL Server.

When done, click Cancel to close the editor. No changes to the connection manager
are necessary at this time.

Right-click the SourceConnectionOLEDB icon, and then select Parameterize from the
shortcut menu. In the Parameterize window, shown in Figure 3-30, you can create

new parameters or assign existing parameters to any of the exposed properties of the
selected object. Parameterization allows the settings to be modified after the solution'’s
deployment, without requiring a re-design.

Lesson 3: Introducing Control Flow, Data Flow, and Connection Managers

121

122

Parameterize - SourceConnectionOLEDB ﬂ

Specify the property to parameterize and the parameter to use. An
expression referencing the parameter will be created on the property.

" Do not use parameter

" Use existing parameter

{* Create new parameter

MName: ISDurceConnecﬁonOLEDB_ServerName

Description:

Value: I(local)

Scope:
' package
" Project

r Sensitive
r Required

Help | OK I Cancel

FIGURE 3-30 OLE DB connection manager parameterization.

Select the ServerName property to be parameterized first; use the Create New Param-
eter option with the default values to create a new parameter for the OLE DB connec-
tion’s server name, and leave the rest of the settings unchanged.

When done, click OK to complete the operation.

Repeat the process in steps 4 and 5 for the same connection manager, this time pa-
rameterizing the InitialCatalog property.

After you finish parameterizing the SourceConnectionOLEDB connection manager,
repeat steps 4 through 6 for the DestinationConnectionOLEDB connection manager.

After parameterizing both connection managers, save the SSIS solution, and then open
the Parameters tab of the SSIS package pane, as shown in Figure 3-31.

TK463_IEWizard.dtsx [Desigr] X

%, Control Flow | (2] Data Flow [Parameters | 7 Event Handiers | g Package Explorer ¢| ,§§|
v ¥

Name | Data type [Vaiue | sensitive | Required | Description

& SourceConnectionOLEDB InitilCatalog | Sting | AdventureWorks2012 False False

& SourceConnectionOLEDB ServerName | Sting | (local) False False

FIGURE 3-31 SSIS Package Parameters

Creating SSIS Packages

REAL WORLD PARAMETERIZATION CONSIDERATIONS

Not all settings of all of the various objects that can exist in an SSIS package can be
parameterized. If there are settings that you need to allow to be configured, but that
are not supported by SSIS parameterization, you could try using a generic property that
is exposed to SSIS parameterization but that also includes the setting you are trying to
parameterize. (For example, network packet size is not exposed to parameterization,
but it can be set inside the connection string, which can be parameterized.)

9. When done, return to the Control Flow tab.

10. On the Debug menu, select Start Debugging, or press F5 on the keyboard, to run the
package in debug mode.

11. When the package runs, you can observe the order of the operations’' execution, gov-
erned by the control flow. As each task is completed, it is marked with a completion
icon: a green check mark shows successful operations, whereas a red X marks failed
ones. Figure 3-32 shows the result of the execution.

%)

| - Preparation SQL Task 1

Comgletion

| - Preparation SQL Task 2

| = | Data Flow Task 1

FIGURE 3-32 SSIS execution in debug mode.

Preparation SQL Task 1 failed, as expected, because it attempted to create two tables
that already existed in the destination database, but because of a completion prece-
dence constraint instead of the (default) success constraint, and because of a disabled
setting that would otherwise cause the package to fail, the rest of the tasks as well as
the package itself completed successfully.

12. After the debugging execution has completed, close SSDT.

Lesson 3: Introducing Control Flow, Data Flow, and Connection Managers 123

124

Lesson Summary

Existing SSIS packages can be added to SSIS projects in SQL Server Data Tools (SSDT).
Control flows contain the definitions of data management operations.
Control flows determine the order and the conditions of execution.

SSIS package settings can be parameterized, which allows them to be changed without
direct access to SSIS package definitions.

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1.

The Execute SQL Task allows you to execute SQL statements and commands against
the data store. What tools do you have at your disposal when developing SSIS pack-
ages to develop and test a SQL command? Choose all that apply.

A. SQL Server Management Studio (SSMS)
B. SQL Server Data Tools (SSDT)

C. The Execute SQL Task Editor

D. SQL Server Enterprise Manager (SSEM)

You need to execute two data flow operations in parallel after an Execute SQL Task has
been completed. How can you achieve that? (Choose all that apply.)

A. There is no way for two data flow operations to be executed in parallel in the same
SSIS package.

B. You can place both data flows inside the same data flow task and create a prece-
dence constraint leading from the preceding Execute SQL Task to the data flow task.

C. You can create two separate data flow tasks and create two precedence constraints
leading from the preceding Execute SQL Task to each of the two data flow tasks.

D. You can create two separate data flow tasks, place them inside a third data flow
task, and create a precedence constraint leading from the preceding Execute SQL
Task to the third data flow task.

Which precedence constraint can you use to allow Task B to execute after Task A even
if Task A has failed?

A. The failure precedence constraint, leading from Task A to Task B.
B. The success precedence constraint, leading from Task A to Task B.
C. The completion precedence constraint, leading from Task A to Task B.

D. Use two precedence constraints—a success precedence constraint, and a failure
precedence constraint, both leading from Task A to Task B.

Creating SSIS Packages

Case Scenarios

In the following case scenarios, you apply what you've learned about creating SSIS pack-
ages. You can find the answers to these questions in the "Answers” section at the end of this
chapter.

Case Scenario 1: Copying Production Data to Development

Your IT solution has been deployed to production, version one is complete, and it is now time
to start the work on the next version. To keep the data in the development and testing envi-
ronment as up to date as possible, your manager has asked you to design a data movement
solution to be used on a regular basis to copy a subset of production data from the produc-
tion data store into the development data store.

1. What method would you use to transfer the data on demand?

2. How would you maximize the reusability of the solution?

Case Scenario 2: Connection Manager Parameterization

Data warehousing maintenance solutions have outgrown your company'’s existing infrastruc-
ture, so new servers had to be installed, and this time all data warehousing applications will
use a dedicated network. In phase 1, all of your SSIS solutions must be redeployed to new
servers, and the system administrator has decided that SSIS projects deserve more network
bandwidth, so in phase 2 you will be allowed to dedicate a greater share of the network
bandwidth to your data movement processes.

1. How much additional development work will you have to do to complete phase 1?

2. What will you have to do to reconfigure all of the connection managers to use larger
network packets for phase 2?

Suggested Practices

To help you successfully master the exam objectives presented in this chapter, complete the
following tasks.

Use the Right Tool

If you can combine the benefits of early deployment with the benefits of providing ultimate
stability for the entire data warehouse solution, you might be able to achieve “the best of
both worlds.” For instance, early deployment might allow other members of your team to
begin their work sooner (for example, if you deploy an initial version of the data warehouse
before the model has been finalized, this might allow report development tasks to start early).

Suggested Practices 125

126

And stabilizing the entire data warehouse solution has obvious benefits (for example, if you
implement changes to the data warehouse model in stages, this might allow the iterations in
report development to be as reasonable as possible).

m Practice1 Develop an initial data movement by using the Import and Export Wizard,
using views in the source data store to emulate data transformations.

m Practice 2 Modify the initial data movement—add proper data transformation logic
as well as appropriate logic to merge new or modified data with existing data.

Account for the Differences Between Development and
Production Environments

After a final version of a data warehousing solution has been deployed to production, any
additional work on the current version, even if these development activities could in fact be
reduced to “tweaking,” will eventually cause delays in the development of the next version.
With good parameterization, the burden of “tweaking” an existing solution is lifted from the
shoulders of the developer and is placed on the shoulders of the administrator.

m Practice 1 Review your existing data movement solutions, and create a list of settings
that could be beneficial to their maintenance in production.

m Practice 2 Create a list of elements in your data movement solution that could be
parameterized, but due to their possible effect on the operational characteristics of the
solution probably should not be parameterized.

Creating SSIS Packages

Answers

This section contains answers to the lesson review questions and solutions to the case sce-

narios in this chapter.

Lesson 1

1.

Correct Answers: B and D

A.

Incorrect: Even though this might seem like the quickest solution, it might only be
quick to develop. Copying a large amount of data from the production environ-
ment to a testing environment should be avoided, especially if most of the data is
just going to be discarded from the destination database afterward.

Correct: It might appear cumbersome to design several SSIS packages for a single
data movement operation, but this approach will solve the principal problem while
also following good data management practices, such as avoiding unnecessary
data movements.

Incorrect: The Edit SQL option in the Column Mappings window of the Import and
Export Wizard cannot be used to modify the data retrieval query, only the destina-
tion table definition.

Correct: An SSIS package created by the Import and Export Wizard can be edited
by using SSDT.

Correct Answers: B and D

A.
B.

Incorrect: Dropping and re-creating tables cannot be used to merge data.

Correct: You can use SSDT to add data merging capabilities to an SSIS package
created by the Import and Export Wizard.

Incorrect: No such option exists in the Import and Export Wizard.

Correct: You can use SSDT to design pretty much any kind of data movement
processes, especially when you want complete control over the operations needed
by the process, but keep in mind that designing SSIS packages “from scratch” may
not be as time efficient as possible.

Correct Answer: C

A.
B.

Incorrect: SSIS package files are not stored in binary format.

Incorrect: SSIS package files might appear as if they are saved as plain text files,
but they are actually well-formed XML files.

Correct: SSIS package files are stored in XML format; the DTSX file extension is
used for distinction.

Incorrect: SSIS packages are not Microsoft Word documents.

Answers 127

128

Lesson 2

1. Correct Answer: C

A.
B.

Incorrect: SSDT is not an extension of SSMS. It is a stand-alone application.

Incorrect: SSDT is not a special edition of SSMS. It is a special edition of Visual
Studio.

Correct: SSDT is a special edition of Visual Studio, with a complete database devel-
opment tool set.

Incorrect: SSDT is not a service.

2. Correct Answers: B and D

A.

B.
C.

Incorrect: Simple data movements can have as many data sources and as many
data destinations as needed.

Correct: Data transformations are present in complex data movements.
Incorrect: Typically, in simple data movements, no transformations are needed,
because the data is transferred unchanged. However, it is possible to transform the
data at the source—such as by making retrieval queries or by using views or other
similar techniques.

Correct: Additional programmatic logic to merge source data with destination
data is present in complex data movements.

3. Correct Answers: B and D

A. Incorrect: SSIS packages cannot contain SSDT solutions.

B. Correct: An SSIS project can contain as many SSIS packages as needed.
Incorrect: An SSIS project can contain more than a single SSIS package.

D. Correct: SSIS packages contain the programmatic logic used in data management
operations, such as data movements and data transformations.

Lesson 3
1. Correct Answers: A and B

A. Correct: SSMS provides all the necessary functionalities to develop and test
SQL code.

B. Correct: SSDT does provide a query designer; it is available from the Data menu,
under Transact-SQL Editor/New Query Connection. Alternatively, the query editor
can also be started from the SQL Server Object Explorer by right-clicking a data-
base node, and selecting New Query... from the shortcut menu.

C. Incorrect: The Execute SQL Task Editor is just a text box into which you can type or
paste a SQL statement.

D. Incorrect: The Enterprise Manager was replaced with SSMS in SQL Server 2005.

Creating SSIS Packages

2.

Correct Answers: B and C

Incorrect: Parallel data flow execution is supported.
Correct: You can place multiple data flow operations inside the same data flow task.

Correct: You can, of course, place data flows in separate data flow tasks, and you
can create multiple precedence constraints leading from or to the same task, as
long as any two tasks are connected to each other only once.

Incorrect: You cannot place a data flow task inside a data flow task, because it
cannot contain tasks, only data flow components.

Correct Answer: C

A.

Incorrect: The failure precedence constraint will allow Task B to execute only if
Task A has failed.

Incorrect: The success precedence constraint will prevent Task B from executing
if Task A fails.

Correct: The completion precedence constraint will allow Task B to execute
regardless of whether Task A has succeeded or has failed.

Incorrect: Only a single precedence constraint can be used to connect two
distinct tasks.

Case Scenario 1

1.

An SSIS package stored in the file system, in the database, or in an unscheduled SQL
Server Agent Job would be appropriate.

At the very least, the SSIS package would have to be parameterized so that it can be
configured appropriately for the specific environment in which it is going to be used.
Additionally, the programmatic logic should account for merging new or modified
data with existing data.

Case Scenario 2

1.

A properly parameterized SSIS package can be redeployed and reconfigured as many
times as needed, without the need for any additional development activities.

The network packet size property of OLE DB connections is not exposed to parameter-
ization; therefore, the entire connection string would have to be parameterized.

Answers

129

Designing and Implementing
Control Flow

Exam objectives in this chapter:
m Extract and Transform Data
m Define connection managers.
m load Data
m Design control flow.

®m Implement control flow.

n the previous chapter, it was established that Microsoft SQL Server Integration Services

(SSIS) facilitate data movement. Of course, the functional capabilities available in SSIS are
not limited to data movement alone—far from it! In its essence, SSIS provides a framework
for developing, deploying, and automating a wide variety of processes. Setting data move-
ments aside for the moment, here are a few examples of other management processes
facilitated by SSIS solutions:

m File system and FTP access For data that resides in or is transported by using files,
the complete set of file and file system management operations is supported in SSIS.
Whether the files exist in the file system, are accessible through the local network,
or reside at remote locations that are accessible via File Transfer Protocol (FTP), SSIS
can be used to automate file system operations (such as downloading files from or
uploading them to remote locations and managing files in the local file system).

m External processes Processes that exist outside the SQL Server environment can
be invoked by using SSIS, for instance, to facilitate data processing that cannot be
integrated with internal data processing tasks (perhaps for compatibility reasons) or
need not be integrated with those internal tasks (perhaps because the cost of com-
plete integration would outweigh the benefits). An example is an on-demand service
that extracts data from an external data store and places it in files that can then be
processed with additional programmatic logic implemented in an SSIS package. If
such an external process is invoked by using the SSIS package, the resulting solution
can be deployed, maintained, and used as a whole, even though its individual parts
essentially remain heterogeneous.

131

132

m SQL Server Administration operations These operations can be automated by
using SSIS. A variety of administrative operations (including backups, integrity checks,
SQL Server Agent Job invocations, cleanup and maintenance operations, index rebuilds
and reorganizations, statistics updates, and various object transfers) are implemented
as standard SSIS tasks. In fact, all SQL Server maintenance plans have been implemented
as SSIS packages since SQL Server 2005.

m Operating system inspection Windows Management Instrumentation (WMI) data
is accessible to SSIS (that is, it can be queried), which means that operations on the
operating system level can also be automated. In addition, SSIS operations can be
controlled with respect to the state of the operating system (for example, you can run
a process only when the server is idle or configure a download process based on the
current disk queue length).

m Send mail SSIS solutions can send email messages (for example, to automate notifi-
cations or even to send data or documents automatically via email).

m SQL Server Analysis Services processing SSIS can be used to process SQL Server
Analysis (SSAS) objects and to execute data definition language (DDL) commands
against SSAS databases.

There are two data management operations that have not been mentioned so far; essen-
tially, they are data movement operations, but they deserve special attention:

m Data profiling SSIS provides ample possibilities for data cleansing, and data profiling
plays an important role in these processes. You will learn more about the Data Profiling
Task in Chapter 17, "Creating a Data Quality Project to Clean Data.”

m Data mining queries SSIS can also be used to extract data from data mining models
and load it into the destination database. You will learn more about the Data Mining
Query Task in Chapter 18, “SSIS and Data Mining.”

Lessons in this chapter:
m Lesson 1: Connection Managers
m Lesson 2: Control Flow Tasks and Containers

m Lesson 3: Precedence Constraints

Before You Begin

To complete this chapter, you must have:
m Experience working with SQL Server Management Studio.
m Elementary experience working with Microsoft Visual Studio or SQL Server Data Tools.

m A working knowledge of the Transact-SQL language.

Designing and Implementing Control Flow

7

Lesson 1: Connection Managers

SSIS supports a variety of data stores (such as files, [relational] database management sys-
tems, SQL Server Analysis Services databases, web servers, FTP servers, mail servers, web
services, Windows Management Instrumentation, message queues, mail servers, and SQL
Server Management Objects). In SSIS projects, a single data store can appear in one or more
roles—as a data source, a data destination, or a reference source, for example. Data access is
provided to control flow tasks and data flow components through special SSIS objects called
connection managers.

After this lesson, you will be able to:
m Understand package-scoped and project-scoped connection managers.

m Define a connection string.

Estimated lesson time: 60 minutes

To simplify development, configuration, and usage, connections and their properties are
not defined per each role that a data store appears in but are defined once and can be re-
used as many times as needed—for different data store roles, and for different tasks and/or
components.

Depending on the data store, and occasionally on the data provider used to establish the
connection, connection managers can be used to retrieve or modify data at the data store
(for example, to send DML commands and queries to the data store), but also to execute data
definition and data control commands against the data store (for example, to send DDL or
DCL commands to the data store). For instance, you can use an Execute SQL Task to create a
temporary table, use it in a data flow task, and drop it when it is no longer needed.

Most connection manager types are installed as part of the SQL Server instance setup.
Additional connection managers are available online, and you can even develop your own
custom connection managers if needed. Table 4-1 describes the connection manager types
that are installed with SQL Server 2012.

EXAM TIP

Become familiar with all standard connection managers; learn about their purpose, usabil-
ity, and the benefits and possible drawbacks of their use. Using inappropriate connection
managers might prevent you from completing your work or might cause you to run out
of time.

Lesson 1: Connection Managers

133

TABLE 4-1 The Standard SQL Server 2012 Connection Manager Types

Connection Manager Type

ADO connection manager

ADO.NET connection
manager

Analysis Services connection
manager

Excel connection manager

File connection manager
and Multiple Files connection
manager

Flat File connection manager
and Multiple Flat Files connec-
tion manager

FTP connection manager

HTTP connection manager

Description

The ADO connection manager en-
ables connections to ActiveX Data
Objects (ADO) and is provided mainly
for backward compatibility. Consider
using an OLE DB or an ODBC connec-
tion manager instead.

The ADO.NET connection manager
enables connections to data stores
using a Microsoft .NET provider. It is
compatible with SQL Server.

The Analysis Services connection
manager provides access to SSAS
databases. It is used by tasks and data
flow components that access SSAS
data and/or issue DDL commands
against SSAS databases.

As the name suggests, the Excel con-
nection manager provides access to
data in Microsoft Excel workbooks.

SSIS uses a special format to store
data in files; the same format is used
for SSIS raw files and for SSIS cache
files. These two connection managers
provide access to a single SSIS data
file or to multiple SSIS data files, re-
spectively.

These connection managers provide
access to flat files—delimited or fixed-
width text files (such as comma-sepa-
rated values files, tab-delimited files,
and space-delimited fixed-width files).
Access is provided through these two
connection managers to a single file
or to multiple files, respectively.

The FTP connection manager provides
access to files via the File Transfer
Protocol (FTP). It can be used to ac-
cess files and to issue FTP commands
against the remote file storage.

The HTTP connection manager pro-
vides access to web servers for receiv-
ing or sending files and is also used
by the Web Service task to access
data and functions published as web
services.

Designing and Implementing Control Flow

Notes

Password-protected Excel work-
books are not supported.

None of the built-in tasks or data
flow components support the
Multiple Files connection man-
ager; however, you can use it in
custom tasks and/or custom data
flow components.

The Flat File source component
supports the use of multiple files
when the data flow is executed
in a loop container. Multiple

flat files will be consumed suc-
cessfully as long as they all use
the same format; otherwise, the
execution will fail.

Only anonymous and basic
authentication methods are sup-
ported—Windows integrated
authentication

is not supported. Secure FTP
(FTPS)

is also not supported.

Only anonymous and basic au-
thentication methods are sup-
ported—Windows integrated
authentication

is not supported.

Connection Manager Type

MSMQ connection manager

ODBC connection manager

OLE DB connection manager

SMO connection manager

SMTP connection manager

SQL Server Compact Edition
connection manager

WMI connection manager

Description

The MSMQ connection manager
provides access to Microsoft Message
Queuing (MSMQ) message queues.

It is used by the Message Queue task
to retrieve messages from and send
them to the queue.

The ODBC connection manager pro-
vides access to database management
systems that use the Open Database
Connectivity (ODBC) specification.
Most contemporary database man-
agement systems, including SQL
Server, support ODBC connections.

The OLE DB connection manager pro-
vides access to database management
systems that use the OLE DB provider.
It is compatible with SQL Server.

The SMO connection manager pro-
vides access to SQL Management
Object (SMO) servers, which allows
the execution of maintenance opera-
tions. It is used by maintenance tasks
to perform various data transfer op-
erations.

The SMTP connection manager pro-
vides access to Simple Mail Transfer
Protocol (SMTP) servers and is used
by the Send Mail task to send email
messages.

As the name suggests, the SQL Server
Compact Edition connection man-
ager provides access to SQL Server
Compact Edition databases. This
particular connection manager is
only used by the SQL Server Compact
Edition Destination component.

The WMI connection manager pro-
vides access to Windows Management
Instrumentation (WMI) data and is
used by the WMI Data Reader and the
WMI Event Watcher tasks.

Notes

Microsoft has announced that

at some point in the near future,
support for OLE DB connections
will be removed in favor of ODBC
connections. To achieve compli-
ance for the future, you should
start using the ODBC connection
manager exclusively for those
connections for which you would
have used the OLE DB connec-
tion manager in the past.

Only anonymous and Windows
integrated authentication meth-
ods are supported—basic au-
thentication is not supported.

The SQL Server Compact Edition
data provider used by SSIS is only
supported in the 32-bit version
of SQL Server, which means that
on 64-bit servers, SSIS packages
that access SQL Server Compact
Edition must run in 32-bit mode.

Lesson 1: Connection Managers

135

NOTE ADO.NET CONNECTION MANAGER

When using stored procedures or parameterized queries against a SQL Server database
in an Execute SQL Task, consider using the ADO.NET data provider, because it provides
a much better usability and manageability experience compared to the OLE DB data
provider:

= With ADO.NET, you can use parameter names in queries, instead of question
marks as parameter placeholders.

® When you are using stored procedures, ADO.NET allows you to set the query
type appropriately (for example, by setting the IsQueryStoredProcedure prop-
erty to True) —you provide the name of the procedure and define the param-
eters in the Task Editor (in any order, with or without the optional parameters),
and the query statement is assembled automatically.

m ADO.NET has better support for data types compared to OLE DB (for example,
Xml, Binary, and Decimal data types are not available in OLE DB, and there are
problems with the SQL Server large object data types VARCHAR(MAX) and
VARBINARY(MAX)).

Connection Manager Scope

SQL Server Database Tools (SSDT) support two connection manager definition techniques,
providing two levels of availability:

) m Package-scoped connection managers are only available in the context of the SSIS
package in which they were created and cannot be reused by other SSIS packages in
the same SSIS project.

) m Project-scoped connection managers are available to all packages of the project in
which they were created.

Use package-scoped connection managers for connections that should only be available
within a particular package, and use project-scoped connection managers for connections
that should be shared across multiple packages within a project.

IMPORTANT CONNECTION MANAGER NAMES

If a package connection manager and a project connection manager use the same name,
the package connection manager overrides the project connection manager.

In line with the suggested practices of utilizing SSDT (Visual Studio) programming con-
cepts and aligning them with real-world concepts, as discussed in Chapter 3, “Creating SSIS
Packages,” project-scoped connection managers allow you to use the same set of connections
across the entire operational unit represented by multiple SSIS packages, as long as they are
grouped inside the same SSIS project.

136 Designing and Implementing Control Flow

32-Bit and 64-Bit Data Providers

The SSIS development environment is a 32-bit environment. At design time, you only have ac-
cess to 32-bit data providers, and as a consequence you can only enlist those 64-bit providers
in your SSIS projects that also have a 32-bit version available on the development machine.

The SSIS execution environment, on the other hand, is dictated by the underlying oper-
ating system, which means that, regardless of the version of the provider that you used at
design time, at run time the correct version will be used. This is true when the package is run
by the SSIS service as well as when you run the package yourself from SSDT.

IMPORTANT AVAILABILITY OF 64-BIT PROVIDERS

Not every provider exists in both 64-bit and 32-bit versions. When deploying SSIS pack-
ages (or projects) that use 32-bit-only providers to 64-bit environments, you will need to
account for the lack of “native” providers by executing the package in 32-bit mode. You
will learn more about this in Chapter 11, “Installing SSIS and Deploying Packages,” and
Chapter 12, "Executing and Securing Packages.”

At design time, you can control the version of the providers to be used explicitly, via the
Run64BitRuntime project setting. When this setting is set to True, which is the default, 64-bit
providers will be used; otherwise, 32-bit providers will be used.

NOTE 64-BIT RUN TIME

The “"Run64BitRuntime” setting is project scoped and is only used at design time. It is
ignored in 32-bit environments.

Parameterization

As discussed in Chapter 3, to simplify SSIS package deployment and maintenance, plan to
parameterize all connection managers, specifically all the settings that might be environment
dependent. Typically, one would parameterize the connection string, or individual elements
of the connection string that might depend on the environment to which the package will

be deployed, such as the name of the instance (ServerName) and the name of the database

Lesson 1: Connection Managers

137

138

(InitialCatalog). Whether parameterizing the entire connection string or its individual ele-
ments provides a better deployment and maintenance experience might seem like a matter
of personal preference; the important thing is just to parameterize. In fact, parameterization
techniques should be aligned to an organization-wide standard. This way, every developer in
the organization can rely on being able to use a common method to solve a common problem.

¥ Quick Check

1. What is the purpose of connection managers in SSIS at design time?
2. What is the purpose of connection managers in SSIS at run time?

3. How does connection manager scope affect their use?

Quick Check Answers

1. At design time, connection managers are used by the SSIS developer to config-
ure a connection to a data source.

2. At run time, connection managers are used by the SSIS engine to establish con-
nections to data sources.

3. A project-scoped connection manager is available to all packages of a particu-
lar SSIS project, whereas a package-scoped connection manager is only avail-
able to the package in which it was created.

Creating a Connection Manager

In Chapter 3, you viewed an existing connection manager and learned how to parameterize
it. In this practice, you will learn how to create a connection manager, how to determine the
appropriate type of connection manager to use in a particular situation, and how to configure
the connection manager appropriately so that it can be used by SSIS data flow tasks and SSIS
data flow components.

If you encounter a problem completing the exercises, you can install the completed proj-
ects that are provided with the companion content. They can be installed from the Solution
folder for this chapter and lesson.

EXERCISE 1 Create and Configure a Flat File Connection Manager

1. Start SSDT and create a new SSIS project by using the information in Table 4-2.

After the project has been successfully created, in the Solution Explorer, under SSIS
Packages, find the automatically generated SSIS package and change its name to
FillStageTables.dtsx, and then save the changes.

Designing and Implementing Control Flow

2.

TABLE 4-2 New SSIS Project Properties

Property

Name
Location

Create Directory For Solution

Value

TK 463 Chapter 4
C:\TK463\Chapter04\Lesson1\Starter\

No (leave unchecked)

To initiate the creation of a new connection manager, right-click the empty surface of
the Connection Managers pane at the bottom of the SSIS package editing pane.

You are creating a connection to a delimited text file, so the appropriate connection
manager type is the Flat File connection manager.

In the Connection Manager's shortcut menu, select New Flat File Connection.

In the Flat File Connection Manager Editor, shown in Figure 4-1, click Browse. Then in
the File Open dialog box, navigate to the C:\TK463\Chapter04\Code folder, select the
CustomerIinformation.txt file, and click Open.

B Flat File Connection Manager Editor gl =l
Connection manager name: IFIat File Connection Manager
Description: I
E;'; General Select a file and specify the file properties and the file format.
Columns File name:
= 1 : C: \TK463\Chapter04\Code\CustomerInfo
Advanced I P
Preview . ;
= Preview Locale: ISIovenian (Slovenia) j ' unicode
Code page: |1250 (ANSI - Central Europe) =l
Format: | Delimited |
Text gualifier: |<n0ne>
Header row delimiter: j
Header rows to skip: Ig ﬁ
¥ Column names in the first data row
_ﬁ Columns are not defined for this connection manager.
OK I Cancel Help
4

FIGURE 4-1 The Flat File Connection Manager Editor.

Lesson 1: Connection Managers

139

140

7.

After selecting the file, review the rest of the settings on the General tab (currently
selected), but do not make any changes.

Click Columns on the left to open the Columns tab, which allows the editor to parse

the file and automatically detect its structure. If everything worked as expected, the

warning message Columns Are Not Defined For This Connection Manager should be
cleared.

REAL WORLD FILE FORMATTING

Always document the structure and formatting of your input files, and do not rely
solely on the fact that metadata is stored inside the connection manager. Use proper
documentation not only to plan your development, but also to implement validation
techniques so that you can detect any changes to the structure or formatting of the
input files, especially if they are provided by third parties.

If you want, review the rest of the settings, but do not make any changes. Click OK to
complete the creation of the Flat File connection manager.

Save the SSIS project and keep it open because you will need it in the next exercise.

EXERCISE 2 Create and Configure an OLE DB Connection Manager

1.

In the Solution Explorer, right-click the Connection Managers node, and on the short-
cut menu, select New Connection Manager.

In the Add SSIS Connection Manager dialog box, shown in Figure 4-2, select the OLE
DB provider and click Add.

In the Configure New OLE DB Connection Manager dialog box, click New to configure
a new OLE DB connection manager.

As shown in Figure 4-3, in the Connection Manager dialog box, , type localhost in
the Server Name text box to connect to the default SQL Server instance on the local
machine.

To complete the selection, make sure that Windows Authentication is selected as the
authentication mode, and in the Select Or Enter A Database Name combo box select
the AdventureWorks2012 database.

To test the connection, click Test Connection. The connection should succeed; if it does
not, check your permissions on the server—for example, by using SQL Server Manage-
ment Studio (SSMS).

After you have successfully configured the connection manager, click OK to complete
its creation.

Designing and Implementing Control Flow

B Add SSIS Connection Manager

Select the type of connection manager to add to the package.

Connection manager type:

=0l x|

1

Type | Description |;|
FILE Connection manager for files
FLATFILE Connection manager for flat files
FTP Connection manager for FTP connections
HTTP Connection manager for HTTP connections
M5MQ Connection manager for the Message Queue task
MSOLAP 100 Connection manager for Analysis Services connections
MULTIFILE Connection manager for multiple files
MULTIFLATFILE Connection manager for multiple flat files
QDBC Connection manager for ODBC connections
ion manage 4
SMOServer Connection manager for SQL Server transfer tasks
SMTP Connection manager for the Send Mail task
SQLMOEILE Connection manager for SQL Server Compact connections
WML Connection manager for the WMI tasks

Add...

o

Cancel |

4

FIGURE 4-2 The Add SSIS Connection Manager dialog box.

K Connection Manager ll

Provider: I Mative OLE DB\SQL Server Mative Client 11.0

g
Connection

)

All

Test Connection |

Server name:

Ilocalhost

j Refresh |

Log on to the server

' |Use Windows Authentication
" Use 50L Server Authentication

User: marme: I

Eassword: I

I | 5ave my. password

r~Connect to a datat

¥ Select or enter a database name:

" Attach a database file:

=

Logical mame;

Erowse, .. |

[o |

Cancel Help

FIGURE 4-3 The Connection Manager dialog box.

Lesson 1: Connection Managers

141

142

7. After returning to the Configure New OLE DB Connection Manager dialog box, click
OK to confirm the selection.

8. Right-click the newly added connection manager and select Properties from the
shortcut menu to view its properties. In the property grid, find the ConnectionString
property. Select the entire value and copy it to the Clipboard by using Ctrl+C.

9. Open Notepad or another text editor, and paste the connection string there.

10. Repeat steps 8 and 9 for the Flat File Connection Manager you created in Exercise 1.
Paste the connection string into the same Notepad window.

11. Inspect and compare both connection strings, which should look like those shown in
Listings 4-1 and 4-2. They contain key information that is used at run time when the
connections are established.

LISTING 4-1 OLE DB Connection String

Data Source=localhost;Initial Catalog=AdventureWorks2012;
Provider=SQLNCLI11.1;Integrated Security=SSPI;Auto Translate=False;

LISTING 4-2 Flat File Connection String

C:\TK463\Chapter04\Code\CustomerInformation.txt

The two connection strings are quite different; they are used by different connection
managers and different data providers. However, they both serve the same purpose—
to provide connection managers with access to the two data sources.

The appropriate programmatic logic of each connection manager then allows the SSIS
solution to access data extracted from different sources as if they were not different
atall.

EXAM TIP

Learn about SQL Server security best practices and recommendations, and think about how
to implement parameterization of sensitive settings such as connection strings to keep
your environment secure, while at the same time utilizing the benefits of parameterization.

When you are done inspecting the connection strings, close the Notepad window. If
prompted to save the file, click Don't Save to close the editor without saving the data.
Return to SSDT.

12. In the Connection Managers pane, you should see a new connection manager named
(project) localhost.AdventureWorks2012.

The text (project) in the connection manager’s name denotes the fact that this is a
project-scoped connection manager.

Designing and Implementing Control Flow

Right-click the connection manager and, on the shortcut menu, select Rename.
Change the name of the new connection manager to AdventureWorks2012 (without
the localhost prefix).

After you confirm the name change, the text (project) is again automatically added to
the front of the name. The sole purpose of this is to distinguish between package and
project connection managers.

13. Save the SSIS project. Then, in the Solution Explorer, right-click the SSIS Packages node
and select New SSIS Package from the shortcut menu to create another SSIS package
in the same project.

14. Make sure that the new package, which by default is named Packagel.dts, is open;
this means that you can access its editor pane and see the connection managers avail-
able to it.

The AdventureWorks2012 project connection manager should be listed as the only
available connection manager.

15. In the Connection Managers pane of the newly added SSIS package, right-click the
project connection manager, and then from the shortcut menu, select Convert To
Package Connection.

A conversion warning should appear, as shown in Figure 4-4, asking you to confirm the
conversion. Do so by clicking OK.
B

& When you convert a project connection to a package connection, packages that use the connection might

! not run. Do you want to convert the project connection?
™ Do not show this message again

EE} OK. I Cancel |
FIGURE 4-4 The Connection Manager Conversion Confirmation dialog box.

16. Open the FillStageTables.dtsx package again. There should now be only one connec-
tion manager listed in its Connection Managers pane.

EXAM TIP

Make sure you understand the difference between package and project connection man-

agers and how naming them affects their usability.

17.

18.

Open the Packagel.dtsx package again, right-click the AdventureWorks2012 package
connection manager, and from the shortcut menu, select Convert To Project Connec-
tion to return it to its original state.

Save the SSIS Project and close SSDT.

Lesson 1: Connection Managers

143

Lesson Summary
m Connection managers are used to establish connections to data sources.
m Different data sources require different types of connection managers.

m The usability of a connection manager within an SSIS project or an SSIS package is
determined by its scope.

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1. You need to extract data from delimited text files. What connection manager type
would you choose?

A. A Flat File connection manager
B. An OLE DB connection manager
C. An ADO.NET connection manager

D. A File connection manager

2. Some of the data your company processes is sent in from partners via email.
How would you configure an SMTP connection manager to extract files from email
messages?

A. Inthe SMTP connection manager, configure the OperationMode setting to Send
And Receive.

B. Itis not possible to use the SMTP connection manager in this way, because it can
only be used by SSIS to send email messages.

C. The SMTP connection manager supports sending and receiving email messages by
default, so no additional configuration is necessary.

D. Itis not possible to use the SMTP connection manager for this; use the IMAP (In-
ternet Message Access Protocol) connection manager instead.

3. You need to extract data from a table in a SQL Server 2012 database. What connection
manager types can you use? (Choose all that apply.)

A. An ODBC connection manager
B. An OLE DB connection manager
C. AFile connection manager

D. An ADO.NET connection manager

144 Designing and Implementing Control Flow

Lesson 2: Control Flow Tasks and Containers

As a principal element of an SSIS package, control flow defines the operations and the re-
lationships between them, establishing the order and the conditions of their execution. The
operations of a control flow are represented by control flow tasks (or tasks, for short), each
task representing a single logical operation (regardless of its actual complexity).

After this lesson, you will be able to:
m Determine the containers and tasks needed for an operation.
m Implement the appropriate control flow task to solve a problem.

m Use sequence containers and loop containers.

Estimated lesson time: 90 minutes

Planning a Complex Data Movement

In contrast to simple data movements, in which data is moved from the source to the destina-
tion “as-is” (unmodified), in complex data movements the data is transformed before being
loaded into the destination. Typically, the transformation could be any or all of the following:

m Data cleansing Unwanted or invalid pieces of data are discarded or replaced with
valid ones. Many diverse operations fit this description—anything from basic cleanup
(such as string trimming or replacing decimal commas with decimal points) to quite
elaborate parsing (such as extracting meaningful pieces of data by using Regular
Expressions).

m Data normalization |n this chapter, we would like to avoid what could grow into a
lengthy debate about what exactly constitutes a scalar value, so the simplest defini-
tion of normalization would be the conversion of complex data types into primitive
data types (for example, extracting individual atomic values from an XML document or
atomic items from a delimited string).

m Data type conversion The source might use a different type system than the
destination. Data type conversion provides type-level translation of individual values
from the source data type to the destination data type (for example, translating a .NET
Bytel[] array into a SQL Server VARBINARY(MAX) value).

m Data translation The source might use different domains than the destination.
Translation provides a domain-level replacement of individual values of the source do-
main with an equivalent value from the destination domain (for example, the character
"F" designating a person’s gender at the source is replaced with the string “female”
representing the same at the destination).

Lesson 2: Control Flow Tasks and Containers 145

m Data validation This is the verification and/or application of business rules against
-, individual values (for example, “a person cannot weigh more than a ton”), tuples (for
example, “exactly two different persons constitute a married couple”), and/or sets (for
example, "exactly one person can be President of the United States at any given time”).

m Data calculation and data aggregation In data warehousing, specifically, a com-
mon requirement is to not only load individual values representing different facts or
measures, but also to load values that have been calculated (or pre-aggregated) from
the original values (for example, “net price” and “tax” exist at the source, but “price
including tax” is expected at the destination).

m Data pivoting and data unpivoting Source data might need to be restructured or
reorganized in order to comply with the destination data model (for example, data in
the entry-attribute-value (EAV) might need to be restructured into columns or vice-
versa).

() EXAM TIP

You should have a very good understanding of what constitutes data transformations.
Knowing whether the data needs to be transformed or not will help you determine not
only which tasks are appropriate in your work, but also how to define the order and the
conditions of their execution.

Another distinguishing characteristic of complex data movements, in contrast to simple
data movements, is the need to provide resolution of the relationships between the new or
modified source data and any existing data already at the destination. This particular require-
ment is of principal importance in data warehousing, not only because additions and modifi-
cations must be applied to the data warehouse continuously and correctly in order to provide
a reliable (uninterrupted and trustworthy) service, but also because all of the organization’s
historical data is typically stored and maintained exclusively in the data warehouse.

The complexity of a data movement depends on the range of transformations that need to
be applied on the source data before it can be loaded into the destination, and on the range
of additional operations needed to properly merge new and modified source data with the
destination data. As complexity increases, the solution’s needs for resources also increases,
as do execution times. As mentioned earlier, data warehousing maintenance operations are
usually performed during maintenance windows—these may be wide (such as overnight) or
narrow (such as a few minutes at specific times during the day). When you are planning data
movements, one of your objectives should always be to try to fully utilize as many available
resources as possible for the maintenance process so that processing time never exceeds the
time boundaries of the relevant maintenance window.

146 Designing and Implementing Control Flow

Knowing your workload well will help you determine the design of the control flow of
your SSIS packages in order to maximize resource utilization (for example, balancing CPU
and |/O operations to minimize latency) and minimize execution time. For instance, by
executing CPU-intensive operations with less-than-significant I/O usage (such as difficult
transformations and dimension load preparations) in parallel with I/O-intensive operations
with less-than-significant CPU usage (such as fact table loads, lookup cache loads, and large
updates) could effectively reduce both CPU as well as I/0 idle times.

Tasks

The SSIS process can be defined as a system of operations providing fully automated man-
agement of data and/or data stores, eliminating the need for human intervention at run
time and limiting it to design time and troubleshooting. The principal objective of SSIS could
be described as striving to achieve automation in as many deterministic, monotonous, and
repetitive operations as possible, so that these operations can be performed by machines, al-
lowing the human participants to focus on what they do best—addressing actual challenges,
rather than deterministic procedures; on creative mental processes, rather than repetitive,
machine-like execution; and on discovery, rather than monotony.

In SSIS, the role of the human is to design (that is, to determine how specific tasks can
be automated), develop (that is, to implement the design), deploy (that is, to commit solu-
tions into execution), and maintain (that is, to monitor execution, solve potential problems,
and—most of all—learn from examples and be inspired to design new solutions); execution is
automated.

SSIS provides a large collection of the tools required in data management operations.
These tools range from simple to quite complex, but they all have one thing in common—
each one of them represents a single unit of work, which corresponds to a logical collection
of activities necessary to perform real-world tasks.

The SSIS tasks can be divided into several groups, according to the concepts upon which

they are based. The following sections describe these groups and the tasks that belong to them.

EXAM TIP

Become familiar with all standard SSIS tasks: understand their intended purpose and their
capabilities as well as their limitations, and always think hard about whether the business
problem can be solved with just a single task or with a system of two or more tasks.

Lesson 2: Control Flow Tasks and Containers

147

148

Data Preparation Tasks

These tasks, shown in Table 4-3, are used to prepare data sources for further processing; the
preparation can be as simple as copying the source to the server, or as complex as profiling
the data, determining its informational value, or even discovering what it actually is.

TABLE 4-3 Data Preparation Tasks

Task

File System task

FTP task

Web Service task

XML task

Data Profiling task

Description

This task provides operations on file system objects (files and folders), such as
copying, moving, renaming, deleting objects, creating folders, and setting object
attributes.

This task provides operations on file system objects on a remote file store via the
File Transfer Protocol (FTP), such as receiving, sending, and deleting files, as well
as creating and removing directories.

Typically, the FTP task is used to download files from the remote file store to be
processed locally, or to upload files to the remote store after they have been pro-
cessed (or created) in the SSIS solution.

This task provides access to web services; it invokes web service methods, re-
ceives the results, and stores them in an SSIS variable or writes them to a file
connection.

This task provides XML manipulation against XML files and XML data, such as
validation (against a Document Type Definition or an XML Schema), transforma-
tions (using XSLT), and data retrieval (using XPath expressions). It also supports
more advanced methods, such as merging two XML documents and comparing
two XML documents, the output of which can consequently be used to create a
new XML document (known as a DiffGram).

This task can be used in determining data quality and in data cleansing. It can be
useful in the discovery of properties of an unfamiliar data set.

You will learn more about the Data Profiling Task in Chapter 17.

NOTE THE FILE SYSTEM TASK

The operations provided by the File System task target individual file system objects. To
use it against multiple objects, you should use the Foreach Loop Container (discussed later

in this chapter).

Workflow Tasks

These tasks, shown in Table 4-4, facilitate workflow, which is the structure of the process in
terms of its relationships with the environment and related processes; these tasks automate
the interaction between individual SSIS processes and/or the interaction between SSIS proc-
esses and external processes (processes that exist outside SQL Server).

Designing and Implementing Control Flow

TABLE 4-4 Workflow Tasks

Task

Execute Package task

Execute Process task

Message Queue task

Send Mail task

WMI Data Reader task

WMI Event Watcher task

Expression task

CDC Control task

Description

This task executes other SSIS packages, thus allowing the distribution of pro-
grammatic logic across multiple SSIS packages, which in turn increases the reus-
ability of individual SSIS packages and enables a more efficient division of labor
within the SSIS development team.

You will learn more about the Execute Package task in Chapter 6, "Enhancing
Control Flow.”

This task executes external processes (that is, processes external to SQL Server).

The Execute Process task can be used to start any kind of Windows application;
however, typically it is used to execute processes against data or data stores
that cannot or do not need to be more closely integrated with the SSIS process
but still need to be performed as part of it.

This task is used to send and receive messages to and from Microsoft Message
Queuing (MSMQ) queues on the local server.

Typically, the Message Queue task would be used to facilitate communication
with other related processes that also utilize MSMQ, such as other SSIS pro-
cesses or external processes.

With MSMQ queues, you can distribute your automated data management
processes across the entire enterprise.

The task allows the sending of email messages from SSIS packages by using the
Simple Mail Transfer Protocol (SMTP).

Typically, the Send Mail task would be used to send information or files,
although it could also be used to send messages regarding its execution.

You will learn more about notifications related to SSIS solution deployment in
Chapter 10, "Auditing and Logging” and Chapters 11 and 12.

This task provides access to Windows Management Instrumentation (WMI)
data, allowing access to information about the environment (such as server
properties, resource properties, and performance counters).

Typically, the WMI Data Reader task would be used to gather WMI data for
further use (to be processed and loaded into a database, for example), or to
monitor the state of the environment in order to determine the behavior of SSIS
processes or SSIS tasks (whether to run them at all or to configure them dynam-
ically in line with the current state of the environment, for example).

This task provides access to WMI events.

Typically, the WMI Event Watcher task would be used to trace events in the
environment, and based on them to control the execution of SSIS processes or
SSIS tasks (for example, to detect the addition of files to a specific folder in or-
der to initiate the SSIS process that relies on these files).

This task is used in the workflow to process variables and/or parameters and to
assign the results to other variables used by the SSIS process.

Typically, the Expression task is used to assign values to variables without the
overhead of using the Script task for the same purpose.

This task controls the life cycle of SSIS packages that rely on the SQL Server

2012 Change Data Capture (CDC) functionality. It provides CDC information
from the data source to be used in CDC-dependent data flows.

Lesson 2: Control Flow Tasks and Containers

149

150

NOTE THE EXPRESSION AND CDC CONTROL TASKS

The Expression and CDC Control tasks are new in SQL Server 2012 Integration Services.

Data Movement Tasks

These tasks, shown in Table 4-5, either participate in or facilitate data movements.

TABLE 4-5 Data Movement Tasks

Task

Bulk Insert task

Execute SQL task

Data flow task

Description

This task allows the loading of data from formatted text files into a SQL Server data-

base table (or view); the data is loaded unmodified (because transformations are not

supported), which means that the loading process is fast and efficient. Additional set-
tings (such as using table lock, disabling triggers, and disabling check constraints) are
provided to help reduce contention even further.

This task executes SQL statements or stored procedures against a supported data store.
The task supports the following data providers: EXCEL, OLE DB, ODBC, ADO, ADO.NET,
and SQLMOBILE, so keep this in mind when planning connection managers.

The Execute SQL task supports parameters, allowing you to pass values to the SQL
command dynamically.

Also see the note about ADO.NET connection managers in Lesson 1, earlier in this
chapter.

This task is essential to data movements, especially complex data movements, because
it provides all the elements of ETL (extract-transform-load); the architecture of the data
flow task allows all of the transformations to be performed in flight and in memory,
without the need for temporary storage.

Chapter 5, “Designing and Implementing Data Flow,” is dedicated to this most vital
control flow task.

IMPORTANT THE BULK INSERT TASK AND PERMISSIONS

The Bulk Insert task requires the user who is executing the SSIS package that contains this

task to be a member of the sysadmin fixed server role. If your security policy does not

allow the SSIS service account to have elevated permissions, consider using a different ac-

count when connecting to the destination server.

NOTE THE DATA FLOW TASK

In contrast to pretty much any other task, the operational characteristics of the data flow
task are not defined solely through properties and parameters; the actual operation of a

data flow task is defined by a system of data flow components that it encapsulates.

Designing and Implementing Control Flow

SQL Server Administration Tasks

SQL Server administration can also be automated by using SSIS solutions; therefore, SSIS pro-
vides a set of tools that supports typical administration tasks, as shown in Table 4-6. Because
these are highly specialized tasks, their names are pretty much self-explanatory.

All of these tasks rely on SMO connection managers for access to the source and des-
tination SQL Server instances. Most of these tasks also require the user executing them to
be granted the elevated permissions required to perform certain activities. (For instance, to
transfer a database, the user needs to be a member of the sysadmin fixed server role at the
source as well as at the destination instance.)

TABLE 4-6 SQL Server Administration Tasks

Task Description

Transfer Database task Use this task to copy or move a database from one SQL Server instance to
another or create a copy of it on the same server. It supports two modes of
operation:

B In online mode, the database is transferred by using SQL Server
Management Objects (SMO), allowing it to remain online for the
duration of the transfer.

B In offline mode, the database is detached from the source instance,
copied to the destination file store, and attached at the destination
instance, which takes less time compared to the online mode, but
for the entire duration the database is inaccessible.

Transfer Error Messages task Use this task to transfer user-defined error messages from one SQL Server
instance to another; you can transfer all user-defined messages or specify
individual ones.

Transfer Jobs task Use this task to transfer SQL Server Agent Jobs from one SQL Server in-
stance to another; you can transfer all jobs or specify individual ones.

Transfer Logins task Use this task to transfer SQL Server logins from one SQL Server instance to
another; you can transfer all logins, logins mapped to users of one or more
specified databases, or individual users.

You can even copy security identifiers (SIDs) associated with the logins. The
built-in sa login cannot be transferred.

Transfer Master Stored Use this task to transfer user-defined stored procedures (owned by dbo)
Procedures task from the master database of one SQL Server instance to the master da-
tabase on another SQL Server instance; you can transfer all user-defined
stored procedures or specify individual ones.

Transfer SQL Server Objects Use this task to transfer objects from one SQL Server instance to another;
task you can transfer all objects, all objects of a specified type, or individual
objects of a specified type.

SQL Server Maintenance Tasks

SQL Server maintenance can also be automated by using SSIS solutions; therefore, SSIS pro-
vides a variety of maintenance tasks, as shown in Table 4-7. In fact, SQL Server maintenance
plans have been implemented as SSIS packages since SQL Server 2005.

Again, the names of these tasks are pretty much self-explanatory.

Lesson 2: Control Flow Tasks and Containers

151

152

TABLE 4-7 Maintenance Tasks

Task

Back Up Database task

Check Database Integrity task

Execute SQL Server Agent Job task

Execute T-SQL Statement task

History Cleanup task

Maintenance Cleanup task

Notify Operator task

Rebuild Index task

Reorganize Index task

Shrink Database task

Update Statistics task

Description

Use this task in your maintenance plan to automate full, differential,
or transaction log backups of one or more system and/or user data-
bases. Filegroup and file level backups are also supported.

Use this task in your maintenance plan to automate data and index
page integrity checks in one or more system and/or user databases.

Use this task in your maintenance plan to automate the invocation of
SQL Server Agent Jobs to be executed as part of the maintenance plan.

Use this task in your maintenance plan to execute Transact-SQL scripts
as part of the maintenance plan.

You should not confuse the very basic Execute T-SQL Statement Task
with the more advanced Execute SQL Task described earlier in this
lesson. The Execute T-SQL Statement Task only provides a very basic
interface, which will allow you to select the connection manager and
specify the statement to execute; parameters, for instance, are not
supported in this task.

Use this task in your maintenance plan to automate the purging of
historical data about backups and restore operations, as well as SQL
Server Agent and maintenance plan operations on your SQL Server
instance.

Use this task in your maintenance plan to automate the removal of
files left over by maintenance plan executions; you can configure the
task to remove old backup files or maintenance plan text reports.

Use this task in your maintenance plan to send email messages to SQL
Server Agent operators.

Use this task in your maintenance plan to automate index rebuilds for
one or more databases and one or more objects (tables or indexed
views).

Use this task in your maintenance plan to automate index reorganiza-
tions for one or more databases and one or more objects (tables or
indexed views).

Use this task in your maintenance plan to automate database shrink
operations.

Use this task in your maintenance plan to automate updates of sta-
tistics for one or more databases and one or more objects (tables or
indexed views).

Designing and Implementing Control Flow

IMPORTANT THE SHRINK DATABASE TASK

Shrinking the database will release unused space from the database files back to the oper-
ating system. To achieve this, SQL Server will probably need to rearrange the contents of
the file in order to place unused portions at the end of the file. This might cause fragmen-
tation, which in turn may have a negative impact on query performance. In addition, a
large modification operation against the database (such as a large insert) performed after
the shrinking of the database might require more space than is available, which will require
the database to grow automatically. Depending on the space requirements, an auto-grow
operation could take a long time, which in turn could cause the modification operation to
reach the timeout and roll back, which could effectively render the server unresponsive.

Therefore, you should avoid shrinking databases, and—most importantly—never automate
the shrinking process unless absolutely necessary, and even then you should make sure to
reserve enough free space to avoid auto-grows!

Analysis Services Tasks

These tasks, shown in Table 4-8, create, alter, drop, and process Analysis Services objects as
well as perform data retrieval operations.

All of these tasks use Analysis Services connection managers to connect to SSAS databases.

TABLE 4-8 Analysis Services Tasks

Task Description

Analysis Services Execute DDL task | This task provides access to SSAS databases for creating, modifying,
and deleting multidimensional objects or data mining models.

Analysis Services Processing task This task provides access to SSAS databases to process multidimen-
sional objects, tabular models, or data mining models.

Typically, the Analysis Services Processing task would be used as one
of the last operations in a data warehouse maintenance process, fol-
lowing data extraction, transformations, loads, and other maintenance
tasks, to prepare the data warehouse for consumption.

Data Mining Query task This task provides access to Data Mining models, using queries to re-
trieve the data from the mining model and load it into a table in the
destination relational database.

You will learn more about the Data Mining Query task in Chapter 18.

Lesson 2: Control Flow Tasks and Containers 153

154

The Script Task

This special task exposes the SSIS programming model via its .NET Framework implementa-
tion to provide extensibility to SSIS solutions. The Script task allows you to integrate custom
data management operations with SSIS packages. Customizations can be provided by using
any of the programming languages supported by the Microsoft Visual Studio Tools for Appli-
cations (VSTA) environment (such as Microsoft Visual C# 2010 or Microsoft Visual Basic 2010).

Typically, the Script task would be used to provide functionality that is not provided by
any of the standard built-in tasks, to integrate external solutions with the SSIS solution, or
to provide access to external solutions and services through their application programming
interfaces (APIs).

For script development, VSTA provides an integrated development environment, which is
basically a stripped-down edition of Visual Studio. The final script is precompiled and then
embedded in the SSIS package definition.

As long as the programmatic logic of the extension can be encapsulated in a single script
in its entirety (that is, without any dependencies on external libraries that might or might
not be available on the deployment server), and as long as reusability of the extension is not
required (that is, the script is used in a single SSIS package or a small enough number of pack-
ages), the Script task is an appropriate solution.

NOTE WHEN TO USE THE SCRIPT TASK

Avoid resorting to the Script task until you have eliminated all possibilities of solving the
business problem by using one or more standard tasks.

Compared to the Script task, standard tasks provide a much better deployment and main-
tenance experience. The developers following in your footsteps and taking your work over
from you might find it much easier to understand a process that uses standard tasks, how-
ever complex, than to "decode” a lengthy Script task.

Custom Tasks

The principal benefit of the Script task is its ability to extend SSIS functionality without the
typical overhead of a complete development cycle; the development process for a simple
script can just as well be considered part of the SSIS package development cycle.

However, as soon as reusability becomes an important issue (for instance, because the
same business logic needs to be implemented in multiple SSIS packages), the deployment and
maintenance of SSIS projects depending on a piece of code embedded in an SSIS package file
stop being trivial.

Designing and Implementing Control Flow

Similarly, deployment and maintenance become complicated if the business problem
outgrows the ability to encapsulate the business logic inside a single script (for instance, if the
developers, purely for practical reasons, decide to reuse existing libraries and reference them
in the script instead of embedding even more code into the SSIS package).

To respond to both these concerns, SSIS also supports custom tasks. Compared to the
Script task, these do typically require a more significant amount of development effort—a
development cycle of their own—Dbut at the same time, they also significantly improve reus-
ability, significantly reduce potential problems with dependencies, and quite significantly
improve the deployment and maintenance experience.

Custom SSIS tasks can be developed independently of the SSIS package. This not only al-
lows for a more efficient division of labor among the developers on the team but also allows
the custom task to be distributed independently from the SSIS packages in which it is going
to be used. Custom SSIS development is discussed in more detail in Chapter 19, "Implement-
ing Custom Code in SSIS Packages."

Containers

When real-world concepts are implemented in SSIS, the resulting operations can be com-
posed of one or more tasks. To allow tasks that logically form a single unit to also behave as a
single unit, SSIS introduces containers.

Containers provide structure (for example, tasks that represent the same logical unit can
be grouped in a single container, both for improved readability as well as manageability), en-
capsulation (for example, tasks enclosed in a loop container will be executed repeatedly as a
single unit), and scope (for example, container-scoped resources can be accessed by the tasks
placed in the same container, but not by tasks placed outside).

EXAM TIP

Although the typical “procedural” approach to programming, in which a single item is proc-
essed at a time, should generally be avoided in favor of “set-oriented” programming, in which
an entire set of items is processed as a single unit of work, some operations still require the
procedural approach— to be executed in a loop.

Study all three containers in SSIS well to understand the differences between them, so that
you can use looping appropriately in your SSIS solutions.

Logic is one reason for grouping tasks; troubleshooting is another. In SSDT, the entire
SSIS package can be executed in debug mode, as can individual tasks, and a group of tasks
enclosed in a container.

SSIS supports three types of containers, as described in Table 4-9.

Lesson 2: Control Flow Tasks and Containers

155

TABLE 4-9 Containers

Container Description

For Loop container This container executes the encapsulated tasks repeatedly, based on an
expression—the looping continues while the result of the expression is
true; it is based on the same concept as the For loop in most programming
languages.

Foreach Loop container This container executes the encapsulated tasks repeatedly, per each item
of the selected enumerator; it is based on the same iterative concept as the
For-Each loop in most contemporary programming languages.

The Foreach Loop container supports the following enumerators: the
ADO enumerator, the ADO.NET Schema Rowset enumerator, the File
enumerator, the Item enumerator, the Nodelist enumerator, and the

SMO enumerator.

Sequence container This container has no programmatic logic other than providing structure
to encapsulate tasks that form a logical unit, to provide a scope for SSIS
variables to be accessible exclusively to a specific set of tasks or to provide
a transaction scope to a set of tasks.

(Quick Check
1. What tasks is the Foreach Loop container suited for?

2. How can the current item or its properties be made available to the tasks inside
a Foreach Loop container?

3. Is it possible to change the settings of an SSIS object at run time?

Quick Check Answers

1. Itis suited for executing a set of operations repeatedly based on an enumer-
able collection of items (such as files in a folder, a set of rows in a table, or an
array of items).

2. You can assign the values returned by the Foreach Loop container to a variable.

3. Yes, it is. Every setting that supports expressions can be modified at run time.

Determining the Control Flow

In this practice, you will begin designing a typical SSIS package used in ETL data management
processes—loading a data warehouse. The data is transferred to the server in one or more
files, and each of the files needs to be processed in the same way: the data must be extracted
from them, transformed, and merged appropriately with existing data at the destination

data store. After the files have been processed, they must be moved to a secondary location
for safekeeping. The data flow task and the extract-transform-load concepts are discussed

in full detail in Chapter 5, so in this practice your main objective will be to create the control

156 Designing and Implementing Control Flow

flow—to determine which tasks correspond to the required operations and to use appropri-
ate containers for maximum efficiency.

If you encounter a problem completing the exercise, you can install the completed proj-
ects that are provided with the companion content. These can be installed from the Solution
folder for this chapter and lesson.

EXERCISE 1 Use an SSIS Package to Process Files

1.

Start SSDT and open an existing project, located in the C:\TK463\Chapter04\Lesson2
\Starter\TK 463 Chapter 4 folder.

This project is a copy of the project you created in Lesson 1 earlier in this chapter.
Open Windows Explorer and explore the project folder; in it you will find two addi-
tional folders named 01_Input and 02_Archive.

Inspect the folders; the first one should contain three files, and the second one should
be empty. When you are done, leave the Windows Explorer window open and return
to SSDT.

Make sure the FillStageTables.dtsx SSIS package is open.
You will add a control flow into the SSIS package to process the files in the 01_Input

folder and move them to the 02_Archive folder after processing.

From the SSIS Toolbox, drag a Foreach Loop container to the design surface. Double-
click the task, or right-click it and select Edit from the shortcut menu, to open the
Foreach Loop Editor.

Use the editor to configure the task by using the information listed in Tables 4-10
and 4-11.

TABLE 4-10 The Foreach Loop Editor General Settings

Property Value

Name Process Input Files

TABLE 4-11 The Foreach Loop Editor Collection Settings

Property Value

Enumerator Foreach File Enumerator

Folder C:\TK463\Chapter04\Lesson2\Starter\TK 463 Chapter 4\01_Input
Files Customerinformation_*.txt

Retrieve file name Fully qualified

Traverse subfolders No (leave unchecked)

Lesson 2: Control Flow Tasks and Containers

157

158

The completed Foreach Loop Editor is shown in Figure 4-5.

1 Foreach Loop Editor

Aj The Foreach Loop container allows execution iteration over an enumeration.
-
l

=0l x|

General

Variable Mappings
Expressions

= Foreach Loop Editor
Enumerator Foreach File Enumerator
Expressions

Enumerator
Specifies the enumerator type.

—Enumerator configuration
Folder:

IC: \TK463\Chapter04\esson2\Starter \TK 463 Chapter 4101 Browse. .. |

Files:
ICustherInfDrmaﬁon_‘.b(t

Retrieve file name

" Name and extension {* Fully qualified ~ Name only

r Traverse subfolders

OK I Cancel Help

FIGURE 4-5 The Foreach Loop Editor

As the Foreach Loop container traverses files in the specified folder, it returns the name
of each encountered file (in this case, a fully qualified file name). To use this informa-

tion later, you need to store it in a variable.

On the Variable Mappings tab of the Foreach Loop Editor, create a new variable assign-

This variable will not be needed outside the Foreach Loop container.

ment. In the list box in the Variable column, select <New Variable>.

Use the dialog box to configure the new variable by using the information listed in
Table 4-12.

The Add Variable dialog box opens.

Designing and Implementing Control Flow

7.

TABLE 4-12 Variable Settings

Property Value

Container FillStageTables

Name inputFileName
Namespace User

Value type String

Value None (leave empty)
Read only No (leave unchecked)

Figure 4-6 shows the completed dialog box.

3
@ Add Variable =

Specify the properties of the new variable.

Container: I FillStageTables LI
Mame: Iinpuh‘iIeName

Namegpace: IUser

Value type: Istring j
value: I

[~ Read only

oK I Cancel

FIGURE 4-6 The Add Variable dialog box.

When done, click OK to complete the creation of a new variable.

When you return to the Foreach Loop Editor, verify the value in the Index column of
the variable mapping. The Foreach Loop task returns a single scalar value, so the value
of the index should be 0 (zero).

When done, click OK to complete the configuration and close the Foreach Loop Editor.

Save the project but leave it open, because you will continue editing it in the following
exercise.

Lesson 2: Control Flow Tasks and Containers

159

160

EXERCISE 2 Assign Property Values Dynamically

1.

In Exercise 1, you have configured the Foreach Loop container to enumerate the files
in the specified folder and store the name of the file in a variable. Now you need to
associate this variable with the Flat File connection manager.

Right-click the Flat File connection manager and select Properties.
In the property grid, find the Expressions property, and in its value box click the ellipsis
button (...) to open the Property Expression Editor.

In the Property column, select the ConnectionString property, and enter the following
expression:

@[User: :inputFileName]

This expression assigns the value of the inputFileName variable to the connection
string of the Flat File connection manager in each iteration of the Foreach Loop con-
tainer, configuring the connection manager dynamically to connect to a different file
each time. The completed dialog box is shown in Figure 4-7.

Zioi
Property expressions:
Property I Expression |
ConnectionString @[User:inputFileName] =

ok | concel |

FIGURE 4-7 The Property Expression Editor.

The Foreach Loop container is now ready to enumerate files and dynamically control
the Flat File connection manager; what it still needs is a few operations that will actu-
ally do some file processing.

From the SSIS Toolbox, drag a data flow task into the Foreach Loop container.

Double-click the data flow task to access the data flow editing surface.

In this exercise, you will not design the entire data flow; these activities are covered in
Chapter 5. What you do need to do in this exercise is to configure a data source compo-
nent; otherwise, you will not be able to complete the rest of the exercises in this chapter.

Drag a Flat File Source component to the data flow editing surface.

Designing and Implementing Control Flow

Double-click the Flat File Source component, or right-click it and select Edit, to open
the Flat File Source Editor.

Make sure that the correct connection manager is assigned to the component—namely,
the Flat File connection manager—and then click OK to complete the configuration of
the component.

Return to the control flow editing surface and add another task to the Foreach Loop
container.

From the SSIS Toolbox, drag the File System task inside the Foreach Loop container.
Define the execution order by creating a precedence constraint between the data flow

task and the File System task. The data flow task should be executed first and the File
System task last.

Double-click the File System task, or right-click it and select Edit, to start the File Sys-
tem Task Editor. Using the information in Table 4-13, configure the task.

TABLE 4-13 File System Task General Settings

Property Value
IsDestinationPathVariable False
OverwriteDestination True

Name Archive Input File
Operation Move File
IsSourcePathVariable True

SourceVariable User:inputFileName

Configure a new connection for the File System task’s DestinationConnection setting.
From the list box in the setting’s value cell, select <New connection> to open the File
Connection Manager Editor.

Use the information in Table 4-14 to configure a new folder connection.

TABLE 4-14 File System Task General Settings

Property ‘ Value
Usage type ‘ Existing folder
Folder ‘ C:\TK463\Chapter04\Lesson2\Starter\TK 463 Chapter 4\02_Archive

The completed dialog box is shown in Figure 4-8.

Lesson 2: Control Flow Tasks and Containers

161

! File Connection Manager Editor ;Iglll

Configure the file connection properties to reference a file or a folder that exists or is
created at run time.

Usage type: IExisﬁng folder j

Folder: IC: \TK463\Chapter04\esson2\Starter’ Browse. .. |

FIGURE 4-8 The File Connection Manager Editor

When done, click OK to confirm the creation.

9. After you have finished configuring the File System task, click OK to complete the con-
figuration and close the editor.

10. Save the project but leave it open. You will finish editing it in the following exercise.

EXERCISE 3 Prepare and Verify SSIS Package Execution

1. Now that you have configured the File System task in Exercise 2 to have the Connection-
String property assigned dynamically, it should display an error; it cannot validate the
source file connection because the inputFileName variable has not been assigned.

Right-click the File System task and select Properties from the shortcut menu. Find the
DelayValidation property in the property grid and change its value to True. This will
disable design-time validation, and the variable will only be validated at run time.

REAL WORLD NON-DEFAULT SETTINGS

There are many settings in SSIS solutions that can be controlled, but you will rarely need
to change them from their default settings.

Therefore, you should make it a practice to document every non-default setting that
you had to implement in your SSIS projects; otherwise, their deployment, maintenance,
and consequent development might become extremely difficult, especially over time—
and not only for your teammates; even you yourself might eventually forget why some
obscure setting in the depths of your SSIS package has one specific value, instead of

another one.

2. Save the SSIS project. If you have followed the instructions correctly, your control flow
should now look similar to the one shown in Figure 4-9.

3. When ready, run the SSIS package in debug mode and observe the execution.

162 Designing and Implementing Control Flow

Aj Process Input 75
] Files

| = | Data Flow Task

Archive Input File

FIGURE 4-9 The SSIS package for processing and archiving input files.

After the execution has successfully completed, switch to Windows Explorer and in-
spect the project’s file system.

The 01_Input folder should now be empty, and the 02_Archive folder should now
contain all three files.

When finished, return to SSDT and close the solution.

Lesson Summary

m Arich collection of tasks supporting the most common data management operations

is provided by the SSIS design model.

Control flow is defined by precedence constraints that determine the order and condi-
tions of execution.

Tasks representing logical units of work can be grouped in containers.

Loop containers allow a unit of work to be executed repeatedly.

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1.

In your SSIS solution, you need to load a large set of rows into the database as quickly
as possible. The rows are stored in a delimited text file, and only one source column
needs its data type converted from String (used by the source column) to Decimal
(used by the destination column). What control flow task would be most suitable for
this operation?

A. The File System task would be perfect in this case, because it can read data from
files and can be configured to handle data type conversions.

Lesson 2: Control Flow Tasks and Containers 163

164

The Bulk Insert task would be the most appropriate, because it is the quickest and
can handle data type conversions.

The data flow task would have to be used, because the data needs to be trans-
formed before it can be loaded into the table.

No single control flow task can be used for this operation, because the data needs
to be extracted from the source file, transformed, and then loaded into the desti-
nation table. At least three different tasks would have to be used—the Bulk Insert
task to load the data into a staging database, a Data Conversion task to convert
the data appropriately, and finally, an Execute SQL task to merge the transformed
data with existing destination data.

A part of your data consolidation process involves extracting data from Excel work-
books. Occasionally, the data contains errors that cannot be corrected automatically.
How can you handle this problem by using SSIS?

A.

Redirect the failed data flow task to an External Process task, open the problematic
Excel file in Excel, and prompt the user to correct the file before continuing the
data consolidation process.

Redirect the failed data flow task to a File System task that moves the erroneous
file to a dedicated location where an information worker can correct it later.

If the error cannot be corrected automatically, there is no way for SSIS to continue
with the automated data consolidation process.

None of the answers above are correct. Due to Excel’s strict data validation rules,
an Excel file cannot ever contain erroneous data.

In your ETL process, a few values need to be retrieved from a database at run time,
based on another value available at run time, and they cannot be retrieved as part of
any data flow task. Which task can you use in this case?

The Execute T-SQL Statement task
The Execute SQL task
The Expression task

The Execute Process task

Lesson 3: Precedence Constraints

When it has been determined which tasks to use to provide the required functionality in an
SSIS solution, and when it has become clear which multiple tasks constitute individual logical
units of work, it is time to define the order of execution, the sequence of operations, and the
conditions that need to be fulfilled to allow the execution to proceed from one task (or set of
tasks) to the next.

Designing and Implementing Control Flow

The resulting workflow should not only determine the sequence, but also when to stop the
execution in case of failure and how to respond to such situations. After all, SSIS processes are
fully automated, and when they are executed there usually is not a user present who would,
as soon as failure has been detected, stop the processes, troubleshoot the problem, remove
the obstacles, and restart the execution. Also, depending on the business case, failure might
or might not be the reason to prevent all tasks that follow the failed one from executing.

After this lesson, you will be able to:
m Determine precedence constraints.

m Use precedence constraints to control task execution sequence.

Estimated lesson time: 40 minutes

To determine the order of execution (also known as the sequence), SSIS provides a special
object named the precedence constraint. Tasks, which must be executed in sequence, need
to be connected with one or more precedence constraints. In the SSDT IDE, the precedence
constraint is represented by an arrow pointing from the preceding task in a sequence to one
or more tasks directly following it.

The way in which the tasks are connected to each other is what constitutes the order,
whereas the type of each constraint defines the conditions of execution.

There are three precedence constraint types, all of them equivalent in defining sequences
but different in defining the conditions of execution:

m A success constraint allows the following operation to begin executing when the pre-
ceding operation has completed successfully (without errors).

m A failure constraint allows the following operation to begin executing only if the pre-
ceding operation has completed unsuccessfully (with errors).

m A completion constraint allows the following operation to begin executing when the
preceding operation has completed, regardless of whether the execution was success-
ful or not.

Each task can have multiple preceding tasks; a task with multiple precedents cannot begin
until all directly preceding tasks have been completed in accordance with the defined condi-
tions. Each task can also precede multiple following tasks; all of these begin after the preced-
ing task has completed in accordance with the defined conditions. However, two distinct tasks
can only be connected with a single precedence constraint; otherwise, one of the precedence
constraints would be redundant or, if the constraints are conflicting, the execution could not
continue anyway.

Precedence constraints can also be extended, allowing dynamic, data-driven execution
conditions to be implemented instead of the standard, static conditions inferred by constraint
types. You will learn more about precedence constraint customizations in Chapter 6.

Lesson 3: Precedence Constraints

165

166

(Quick Check

1. Can SSIS execution be redirected from one task to another?
2. Can multiple precedence constraints lead from the same preceding task?
3. What is the principal difference between a success constraint and a completion
constraint?
Quick Check Answers

1. Yes, by using different conditions in precedence constraints, the order of
execution can be directed to the following tasks in one branch or to another
branch.

=

Yes, multiple precedence constraints can lead from a single task to the follow-
ing tasks, but only one precedence constraint can exist between two distinct
tasks.

w
.

A success constraint will only allow the process to continue to the follow-

ing task if the preceding task completed successfully, whereas a completion
constraint will allow the process to continue as soon as the preceding task has
completed, regardless of the outcome.

Determining Precedence Constraints

In this practice, you will edit the SSIS solution you created in Lessons 1 and 2, earlier in this
chapter, to learn about the different types of precedence constraints. You will extend the
existing SSIS package with an additional File System task used to move any files that cannot
be processed to a special location.

EXERCISE 1 Use Precedence Constraints

1.

Start SSDT and open the existing project located in the C:\TK463\Chapter04\Lesson3
\Starter\TK 463 Chapter 4 folder.

This project is a copy of the project you created in Lessons 1 and 2 earlier in this chapter.
Open Windows Explorer and explore the project folder; you should already be famil-
iar with the files named Customerinformation_01.txt, Customerinformation_02.txt,

and Customerinformation_03.txt, but there are two additional files named Customer-
Information_04.txt and Customerinformation_05.txt in that folder as well.

Open the Customerinformation_04.txt file using Windows Notepad, and inspect its
contents. As you can see, it does not contain the correct data and might therefore
cause the SSIS package to fail. This is exactly what you will need in this exercise.

The project folder also contains a new subfolder named 03_Unresolved.

Leave the Windows Explorer window open for now.

Designing and Implementing Control Flow

3. Return to SSDT and open the FillStageTables.dtsx SSIS package for editing.
4. Create a precedence constraint between the data flow task and the Archive Input File
task.

To do this, select the preceding task (the data flow task) and then drag the arrow at the
bottom of the selected task to the following task (the Archive Input File task).

When you release the mouse button, a precedence constraint is created.
5. Double-click the newly created precedence constraint, or right-click it and select Edit,
to open the Precedence Constraint Editor.

Review the properties of the precedence constraint you just created. By default, every
constraint is a success constraint, meaning that execution will proceed with the follow-
ing task if the preceding task completed successfully.

6. Open the list box next to Evaluation Operation and review the available constraint
types.
By default, a precedence constraint is a simple constraint, meaning that only the
completion of the preceding task is checked when the constraint is evaluated. You
can use an expression to include additional checks in the evaluation. You will learn
more about this in Chapter 6.

7. When ready, click Cancel to close the Precedence Constraint Editor, abandoning any
changes you might have made.

8. Save the project but leave it open, because you will continue editing it in the following
exercise.

EXERCISE 2 Redirect Task Execution with Failure Precedence Constraints
1. Drag a new File System task from the SSIS Toolbox into the Foreach Loop container.

2. Double-click the newly added task, or right-click it and select Edit to open the File
System Task Editor. Use the information in Table 4-15 to configure this task.

TABLE 4-15 File System Task General Settings

Property Value
IsDestinationPathVariable False
OverwriteDestination True

Name Exclude Failed File
Operation Move File
IsSourcePathVariable True

SourceVariable User:inputFileName

Lesson 3: Precedence Constraints 167

3. Configure a new connection for the new File System task's DestinationConnection set-
ting. In the list box in the setting's value cell, select <New connection> to open the File
Connection Manager Editor.

Use the information in Table 4-16 to configure a new folder connection.

TABLE 4-16 File System Task General Settings

Property ‘ Value
Usage type ‘ Existing folder
Folder ‘ C:\TK463\Chapter04\Lesson3\Starter\TK 463 Chapter 4\03_Unresolved

When done, click OK to confirm the creation.

4. The File System task should now be in error, for the same reasons as in Lesson 2. Set
the task’s DelayValidation setting to True to disable design-time validation.

5. Create a precedence constraint between the data flow task and the new File System
task; the data flow task precedes the File System task.

6. Double-click the newly created precedence constraint, or right-click it and select Edit,
to open the Precedence Constraint Editor.

Change the value of the constraint to Failure. This means that the newly added File
System task will only execute if the data flow task has failed. When done, click OK to
confirm the change.

7. Right-click the Foreach Loop task and select Properties from the shortcut menu. In the
property grid, find the MaximumErrorCount setting and change its value to 100.

This setting controls how many times an error can occur during execution before the

processing will stop. By increasing the count to 100 you have made it possible for the
Foreach Loop task to keep processing files, regardless of whether they can actually be
processed or not, until the number of failed files (or other failures) reaches 100.

NOTE SETTINGS, SETTINGS, SETTINGS...

This is just another friendly reminder to make it a practice of documenting any and all
non-default settings in your SSIS projects for future reference.

8. If you have followed the instructions correctly, your control flow should now look simi-
lar to the one shown in Figure 4-10.

9. Save the project, run it in debug mode, and observe the execution.

168 Designing and Implementing Control Flow

Pl I Process Input Files ~

| = | Data Flow Task

Failure |

Archive Input File Exclude Failed File
A

FIGURE 4-10 The SSIS package with redirection.

10. After the execution has completed, switch to Windows Explorer and inspect the file
system.

The 01_Input folder should be empty—all of the files should have been processed.

The 02_Archive folder should contain four files—these are the four correctly formatted
files.

The 03_Unresolved folder should contain the problematic Customerinformation_04.txt
file that you inspected at the beginning of this exercise.

11. When done, close the solution.

Lesson Summary

®m Precedence constraints determine the order of execution and the conditions that must
be met for the process to either continue or stop.

m Precedence constraints can even be used to allow the process to recover from failures.

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1. How is the order of execution, or the sequence of operations, defined in an SSIS
package?
A. The SSIS run time engine determines the order of execution automatically, based

on the type of operations, the available software and hardware resources, and the
size of data.

B. The sequence is defined by using precedence constraints.
C. The sequence is defined by using the Sequence container.

D. The sequence is defined at design time by using precedence constraints and
Sequence containers, but at run time the SSIS engine executes the operations in
the order set by the most appropriate execution plan for maximum performance.

Lesson 3: Precedence Constraints

169

170

2. How does the Failure constraint affect the execution order?
A. The following task will only execute after the preceding task has failed.
B. The following task will only execute if the preceding task has not failed.

C. The following task will never execute, because this constraint is only used at
design time.

D. The following task will execute regardless of whether the preceding task has failed,
but an error will be written to the SSIS log.

3. Inyour ETL process, there are three external processes that need to be executed in
sequence, but you do not want to stop execution if any of them fails. Can this be
achieved by using precedence constraints? If so, which precedence constraints can
be used?

A. No, this cannot be achieved just by using precedence constraints.

B. Yes, this can be achieved by using completion precedence constraints between the
first and the second and between the second and the third Execute Process tasks,
and by using a success precedence constraint between the third Execute Process
task and the following task.

C. Yes, this can be achieved by using completion precedence constraints between
the first and the second, between the second and the third, and between the third
Execute Process task and the following task.

D. Yes, this can be achieved by using failure precedence constraints between the first
and the second, and between the second and the third Execute Process tasks, and
by using a completion precedence constraint between the third Execute Process
task and the following task.

Case Scenarios

In the following case scenarios, you apply what you've learned about designing and imple-
menting control flow. You can find the answers to these questions in the "Answers” section at
the end of this chapter.

Case Scenario 1: Creating a Cleanup Process

In your data management system, there are two data warehouses (that is, in addition to

the operational data store); the principal data warehouse contains all the data, including all
historical data, and the secondary data warehouse is used by web applications, exposing your
data to customers, and should therefore only contain current data. Your data warehousing
solution is already in place, moving data into both data warehouses.

Designing and Implementing Control Flow

You have been tasked with creating an additional process to determine which data is no
longer current and must therefore be removed from the secondary data warehouse.

1. How will you determine which rows need to be removed?

2. What technique would you use to perform the removal as efficiently as possible?

Case Scenario 2: Integrating External Processes

In its data management scenarios, your company uses a mix of proprietary solutions that your
team has developed and third party, off-the-shelf solutions that to you, a seasoned devel-
oper, appear just like black boxes—you can trust these solutions to work as expected without
even a faint clue about how this is actually done.

In your data warehousing solution, you need to consolidate data from a solution of your
own and from two diverse black boxes, one of which has a special data extraction tool (a
stand-alone application) that retrieves data from the internal store and saves it to files in the
file system, while the other one exposes its API layer, providing access to its internal data
retrieval functionalities.

1. What functionalities does SSIS provide that can be used to integrate such diverse solu-
tions into a single SSIS process?

2. How would you use the SQL Server platform to solve this problem?

Suggested Practices

To help you successfully master the exam objectives presented in this chapter, complete the
following tasks.

A Complete Data Movement Solution

Think about all the processes involved in preparing data to be consumed by the analytical
tools used by your managers when determining company strategy. The data must be consoli-
dated, cleansed, loaded into the data warehouse (which includes transforming it appropriately
and merging it with existing data), and finally, it must be loaded into the multidimensional
SQL Server Analysis Database.

All of these processes need to be performed automatically, at predefined times, and pro-
vide current and coherent results in the end. Otherwise, the operations and—eventually—
even the future of the company might be at stake.

Suggested Practices

171

m Practice 1 Plan the data consolidation and data cleansing part of your solution. How
will you load the data from all the different sources (applications) in your company?
What measures will you take to use a unified cleansing process?

m Practice 2 Plan your data warehouse loading processes. How many separate
processes will you require? How will you guarantee the correct execution order to
maintain appropriate levels of data integrity inside the data warehouse? When errors
are encountered during execution, how will you prevent erroneous data from being
available to analysts?

m Practice 3 Plan the deployment of your solution. What can you do to make it pos-
sible to deploy your solution to a production environment? Which properties of the
SSIS solution will the database administrator, who is in charge of maintaining it, be able
to control?

172 Designing and Implementing Control Flow

Answers

This section contains answers to the lesson review questions and solutions to the case sce-
narios in this chapter.

Lesson 1
1. Correct Answer: A

A. Correct: The Flat File connection manager can be used to access data in delimited
text files.

B. Incorrect: The OLE DB connection manager cannot be used to connect to text
files.

C. Incorrect: The ADO.NET connection manager cannot be used to connect to text
files.

D. Incorrect: A File connection manager could be used to access files in the file sys-

tem, but additional programmatic logic would be required to access the data in
delimited text files.

Correct Answer: B

Incorrect: No such configuration setting exists for the SMTP connection manager.
Correct: SSIS does not support receiving email messages.
Incorrect: SSIS does not support receiving email messages.

Incorrect: An IMAP connection manager does not exist in SSIS.

Correct Answers: A, B, and D

Correct: The ODBC connection manager is compatible with SQL Server 2012.
Correct: The OLE DB connection manager is compatible with SQL Server 2012.
Incorrect: The File connection manager cannot be used to connect to SQL Server.

Correct: The ADO.NET connection manager is compatible with SQL Server 2012.

Answers 173

174

Lesson 2

1.

Correct Answer: C

A.

Incorrect: The File System task does not provide access to the data stored in the
file, and therefore cannot be used to extract or convert the data.

Incorrect: Although the Bulk Insert task does provide high performance data
extraction and loading, it does not facilitate any data transformations.

Correct: The data flow task provides all three essential elements of complex data
movements—data extraction, data transformations, and data loading. In addition,
all three types of operations can be performed in memory and—depending on
the data provider used by the destination connection manager—fast loading can
also be used.

Incorrect: All of these operations can be accomplished in a single task; you just
need to be familiar with all of them to determine the most appropriate one.

Correct Answer: B

A.

Incorrect: Though you can use SSIS to run external processes as part of the SSIS
solution, even applications with a user interface, SSIS processes are essentially
intended for automated execution on a server, without any run-time user interven-
tion. Think of what would happen if you did open each erroneous Excel file in Excel
inside an SSIS process—several Excel windows would be open on a server that
probably does not even have a screen installed.

Correct: Do not create dependencies on user intervention in your automated
processes—store any erroneous input files in a safe location and notify the user
to correct them, independently of the SSIS process, and return them to the initial
location to be processed on the next occasion.

Incorrect: SSIS provide several possibilities for recovering from errors, allowing
you not only to automate the data management process but also to automate
recovery from erroneous states.

Incorrect: If there is any “trick” in this question, it is in the statement about Excel’s
strict data validation rules. Excel is not a data management system and therefore
has limited data validation and data integrity functionalities built in.

Correct Answer: B

A.

Incorrect: The Execute T-SQL Statement task cannot retrieve values from the data-
base, nor does it support parameters, both of which are needed in this case.

Correct: The Execute SQL task can be used in this case, because it allows values to
be passed as input parameters to the SQL statement retrieved as output param-
eters from the statement.

Incorrect: The Expression task cannot be used to retrieve data from a data source.

Incorrect: Although arguments can be passed to the external process via the
Execute Process task, values cannot be retrieved this way.

Designing and Implementing Control Flow

Lesson 3

1.

Correct Answer: B

A.

Incorrect: Execution order is not determined automatically. SSIS does not have
built-in logic to determine the most appropriate order for executing the opera-
tions. If no precedence constraints have been used, SSIS will execute all operations
at once.

Correct: Precedence constraints determine the execution order.

Incorrect: Although Sequence containers allow you to group tasks for execution,
they do not directly determine the execution order.

Incorrect: Although it is true that an execution plan is created by the SSIS run time
engine, the execution order, defined by precedence constraints, is preserved.

Correct Answer: A

A.

Correct: A failure constraint will allow the following task to begin if the preceding
task has encountered errors and failed.

Incorrect: It is the success constraint that will allow the following task to begin
if no errors have been encountered by the preceding task, which in this case has
completed successfully.

Incorrect: Use of constraints is not limited to design time.

Incorrect: The error will be logged, but the following task will begin if and only if
the preceding task has failed.

Correct Answer: C

A.
B.

Incorrect: The objective can be achieved by using precedence constraints alone.

Incorrect: If a success precedence constraint is used between the last External
Process task and the following task, the process will stop if the last External Process
task fails.

Correct: The External Process tasks will be executed in sequence, and the process
will continue, even if one or more of them fail.

Incorrect: In this case, the process will continue only if both the first and the sec-
ond External Process tasks fail.

Answers

175

176

Case Scenario 1

1.

There are several techniques that could be used, but probably the simplest one would
be to identify current rows first, and then use an anti-join (for example, by using
EXCEPT or NOT EXISTS) against the entire row set, to identify the rows that are not
current.

To use SQL Server for maximum efficiency when removing a set of rows, you could

use a staging table in the same database, fill it with primary key values identifying the
rows to be removed, and then issue a set-oriented DELETE statement (such as DELETE...
WHERE EXISTS or MERGE.. WHEN MATCHED THEN DELETE).

Case Scenario 2

1.

To integrate external processes, implemented as individual applications, into an SSIS
solution, you could use the Execute Process task or a Script task with the appropriate
business logic to control the execution of the external applications. To improve reus-
ability and simplify deployment, a Custom task could also be developed to replace the
Script task.

The three diverse solutions would probably be integrated by using three different
techniques, as follows:

m To retrieve the data from the data store of the proprietary solution, you could sim-
ply create a connection manager to connect to this data store and use standard
SSIS tasks to extract the data.

m To retrieve the data from the second application, the External Process task could be
used to execute data retrieval, followed by a Foreach Loop task to process the files
and a Bulk Insert task or a data flow task to extract the data from them by using the
Flat File connection manager.

m To retrieve the data from the third application, a Script task could be used to access
the application’s API, retrieve the data from the application’s internal data store, and
perhaps save it to a file (for example, an SSIS File or a Flat File) to be processed later.

To simplify data transformation and loading, all three solutions would only focus on
data extraction, loading the data into a staging table, and thus providing a single, uni-
fied data source to be consumed by a single transformation and loading process.

Designing and Implementing Control Flow

Designing and Implementing
Data Flow

Exam objectives in this chapter:
m Extract and Transform Data
m Design data flow.

®m |Implement data flow.

he previous chapter covered control flow tasks that orchestrate the whole extract-

transform-load (ETL) process. This chapter looks at the most important control flow
task—the data flow task, which is a crucial component in the data warehouse project for
ETL operations. All the components in a data flow task operate on rows of data. You can
group the elements of the data flow task into three categories: data source adapters, data
destination adapters, and data transformations. This chapter shows you how to create data
flow tasks and use an appropriate ETL strategy.

Lessons in this chapter:
m Lesson 1: Defining Data Sources and Destinations
m Lesson 2: Working with Data Flow Transformations

m Lesson 3: Determining Appropriate ETL Strategy and Tools

Before You Begin

To complete this chapter, you must have:

m Basic knowledge of Microsoft SQL Server 2012 Integration Services (SISS) control flow
features and components.

m Experience working with SQL Server 2012 Management Studio (SSMS).
m A working knowledge of the Transact-SQL language.

m Experience working with SQL Server Data Tools (SSDT) or SQL Server Business
Intelligence Development Studio (BIDS).

® An understanding of dimensional design.

177

178

Lesson 1: Defining Data Sources and Destinations

The data flow task is one of the most important and complex control flow tasks in SQL Server
Integration Services (SSIS). It encapsulates a data flow engine that extracts, transforms, and
loads data from data sources to data destinations. The data flow engine uses an in-memory,
buffer-oriented architecture to efficiently manage different kinds of datasets. The basic unit
for all components in a data flow task is a row. Rows are grouped into buffers, and buffers are
used to move rows through a data pipeline. It's called a pipeline because rows flow in, then
through, and then out of the data flow task. In this lesson, you will learn how to read data
from sources and write data to data destinations.

After this lesson, you will be able to:
m Create a data flow task.
m Create a data flow source adapter.
m Create a data flow destination adapter.

®m |Implement a simple data flow.

Estimated lesson time: 70 minutes

Creating a Data Flow Task

When creating an ETL solution for your data warehouse project, you will spend most of the
time building various kinds of data flow tasks. Each package can have zero or more data
flow tasks. To add a data flow task to a package, either drag the data flow task from the SSIS
Toolbox in the control flow or double-click the task to add it to the control flow area. Now
you can select the data flow task and open the Data Flow tab of the SSIS designer, either by
double-clicking it or by selecting the Data Flow tab. When you are in the data flow designer,
you can browse through multiple data flow tasks by selecting the tasks in the Data Flow Task
drop-down list.

There are three types of data flow task components in the SSIS Toolbox:
m Data flow source adapters

m Data flow transformations

m Data flow destination adapters

Data flow adapters provide the ability to extract data from and load data to data sources.
Data flow transformations use the data provided by data flow adapters to apply a broad
range of possible modifications, from simple one-to-one mappings to the application of com-
plex business logic when data is transferred, for example to a data warehouse.

Designing and Implementing Data Flow

In SQL Server Data Tools (SSDT) 2012, data flow components are grouped by default into
five sections in the SSIS Toolbox:

m Favorites

= Common

m Other Transformations

m Other Sources

m Other Destinations

You can move each component between sections by right-clicking it and selecting the sec-
tion you want. This allows you to personalize your design environment so that you can quickly
access the components you use most. If you would like to restore the default values, just
right-click anywhere inside the SSIS Toolbox and select Restore Toolbox Defaults. Figure 5-1
shows the Data Flow tab with the SISS Toolbox open. Notice the difference between the SSIS
Toolbox components inside the control flow and the ones inside the data flow. Note also that
the SSIS Toolbox is a new feature in SQL Server 2012 and that it is different than the Toolbox
in previous versions. You can enable it by clicking the icon in the upper-right corner of the
designer window.

=181 x]

TK 463 Chapter 5 - Microsoft ¥isual Studio {(Administrator)
File Edit Wiew Project Buld Debug Data Format SSIS Tools Window Help

~Q B4 8] - | b e |3 BB

M Al FillStageTables. disx [Design]* 3¢

n Explorer

- ol =] =y I’} =
Favorites) T i Contro.. (S0 DataFl.. | @ Param... | F Event.. |T: Packaq.. ,/l ;;'xl =
P SDastlnatAmC\ ,:ssuitant #2 Tk 463 Chapter 5
5 Source Assistan! Data Flow Task: [Insert stgPerson i1 | & Project params
4 Common Bl [Connection Managers
> Aggregate I Tk4530W_ODBC.conmar

1 Adventureworks2012_ODBC. conmgr
1 CustamesInfarmation. conmar
I Adventureworks2012 conmar
. TK4B30% . conmar
[l [5515 Packages
|, FilstageTables. dtsx
| Miscellanenus

Conditional Split
%40 Data Conversion
£ Derived Column
% Lookup
§ Merge
Merge Join
Multicast
55 OLE DB Command
[Row Count
LT Script Component
L& slowty Changing Dimension

1T sert
Union Al 3] Salution Explarer
4 Other Transforms
57 Audit Insert stgPerson Task -
-
Cache Transform —
22 coc splitter B =
A
3o Character Map FailParentOnFaiure False =
j_] Copy Column : MazimumErrorCount 1
Data Mining Query : =]
Jr DQS Cleansing : FarcedExecutionvalu 0
Export Column = ForcedExecutiontaly Int32
Fuzzy Grouping : ForceExscutionValus False
Fuzzy Lookup =
5 Import Column Description Data Flow Task
s Percentage Sampling o jis} {42DB26A2-78B4-4B5E-|
Name Insert stgPerson -
v | Information... “ [connection Managers
Drag a toolbox item to SS15 Designer to (oroi e . s
e || (project) AdventureWarks2012 | (profect) AdventureWorks2012_0DBC Species the name of the object,

(project) CustomerInformation | | (project) Tk4630W | (project) TK463DW_ODEC

SR ssisT 5 Properties

FIGURE 5-1 The SSIS Toolbox in SQL Server 2012.

Lesson 1: Defining Data Sources and Destinations

179

180

You can add any data flow component from the SSIS Toolbox to the Data Flow tab in the
SSIS Designer either by dragging or by double-clicking them.

\) ‘ EXAM TIP

At run time, the data flow task builds an execution plan from the data flow, and the data

flow engine executes the plan.

Defining Data Flow Source Adapters

A data flow source adapter is used to extract data from a source and make it available to other
components inside a data flow. Data flow source adapters use Integration Services connec-
tions, which can be at the package level or at the project level and which point to specific
server instances or file locations for the data source. All active connections are listed in

the Connection Managers window. The exceptions are the Raw File adapter and the XML
adapter, which do not use the package or project connections. Table 5-1 describes the data
flow sources and their uses.

TABLE 5-1 Data Flow Sources and Their Uses

Data flow source

ADO.NET source

CDC source

Excel source

Flat File source

ODBC source

OLE DB source

Raw File source

XML source

Purpose

This source provides connections to tables or queries through an ADO.NET provider.

Change Data Capture (CDC) is a new component in SQL Server 2012 that allows the re-
trieval of only changed data (from insert, update, or delete operations) from the source
system. It uses an ADO.NET provider to connect to a CDC-enabled table. This source
will be explored in more detail in Chapter 7, “Enhancing Data Flow,” in the discussion
about incremental data load strategies.

This source allows extraction from a Microsoft Excel worksheet defined in an Excel file.

This source allows you to extract data from delimited or fixed-width files created with
various code pages. It uses a Flat File connection manager.

This source connects to a defined ODBC source by using native ODBC and not the
OdbcDataProvider in ADO.NET, as in versions before SQL Server 2012. This is also a
new component.

This source connects to installed OLE DB providers such as SQL Server, SQL Server
Analysis Services (SSAS), and Oracle.

The Raw File source reads data from a native SSIS data file that was written by the Raw
File destination. Because the representation of the data is native to the source, the data
requires no translation and almost no parsing. This means that the Raw File source can
read data more quickly than other sources.

The XML source allows raw data to be extracted from an XML file. It requires an XML
schema to define data associations.

Designing and Implementing Data Flow

IMPORTANT USING THE NEW ODBC SOURCE OVER OLE DB SOURCE FOR SQL SERVER

In previous versions of SQL Server, | always used the OLE DB provider when working with
SQL Server as a data source or data destination. In 2011, Microsoft released a statement
announcing that it is aligning with ODBC for native relational data access and that SQL
Server 2012 will be the last release to support OLE DB. Based on this, | suggest that you use
the new ODBC source adapter when creating your SSIS packages.

To create a data flow source adapter, you can either use a new component called the Source
Assistant or you can directly choose the specific source adapter from the Other Sources section
of the SSIS Toolbox. The Source Assistant helps you create a source adapter and connection
manager. It is located in the Favorites section of the SSIS Toolbox.

Adding a Data Flow Source Adapter by Using the Source Assistant

You use the Source Assistant component to add a source adapter by following these steps:

1. Inside the package, on the Control Flow tab of the SSIS Designer, drag the data flow
task from the SSIS Toolbox to the Control Flow tab of the SSIS Designer.

2. Double-click the data flow task you just added. From the Data Flow SSIS Toolbox, drag
the Source Assistant component onto the data flow designer.

3. Inthe Add New Source dialog box, you can create and configure the necessary source
adapters and connection managers. By default, the assistants will only show the
source types that you have installed on your computer. Clear the Show Only Installed
Source Types check box to see a larger list of types. Figure 5-2 shows that if you already
have a connection manager that will work with a particular type, it will be displayed in
the Select Connection Managers list when the corresponding type is selected in the
Types list.

4. Select the type of source you need in the Select Source Type list.

5. Select an existing connection manager or select New to create a new connection
manager.

6. Click OK.

Lesson 1: Defining Data Sources and Destinations

181

182

P Source assistant - Add New Source =

Select source type: Select connection managers
SOL Server Mew...

Excel Adventureywiorks2012

Flat File TKABIDW

DB2

Oracle

SAP Bl

Sybaze

Teradata

™ Shaw only installed source types

ction to the

(] Lancel |
4

FIGURE 5-2 The Add New Source dialog box.

The Source Assistant component is new in SQL Server 2012 and can be useful when you
are just starting to work with SSIS. For real-life projects, however, the best practice is to define
the project connections and select the appropriate source adapter under the Other Sources
section in the SSIS Toolbox.

Configuring the Data Flow Source Adapter

Most of the data source adapters have similar configuration possibilities. As an example,
Figure 5-3 shows the Connection Manager tab of the OLE DB Source Editor dialog box for
reading the source data from the Person.Person table inside the AdventureWorks2012 data-
base for staging the data later inside the TK463DW database.

In this example, the data access mode is set to Table Or View, and the source table is
selected. If the data access mode was set to SQL Command, you could write a custom SQL
SELECT statement.

Each row or line (depending on the source) will be converted to SSIS columns inside the
source adapter. You can specify the columns to be used in the data flow by selecting them on
the Columns tab in each Data Source Editor.

CHAPTER 5 Designing and Implementing Data Flow

=T

Configure the properties used by a data flow to obtain data from any OLE DE provider,

Specify an OLE DB connection manager, a data source, or a data source view, and select the data
= access mode, If using the SQL command access mode, specify the SQL command either by byping

Colurns the query or by using Query Builder,

Error Outpuk

Manager

OLE DB connection manager:

I Adventureorks2012 LI Mew, ..

Data access mode:
ITabIe of view j

Mame of the table or the view:

I = [Person].[Person] j

Prewview, ., |

OF I Cancel Help

FIGURE 5-3 The Connection Manager tab of the OLE DB Source Editor.

IMPORTANT BEST PRACTICE

The best practice is to extract only the needed columns.

You can also specify properties for each data source adapter by selecting the object and
looking at its Properties window. An example would be to set the number of seconds before a
command times out by using the CommandTimeout property.

EXAM TIP

Many SSIS objects have a ValidateExternalMetadata property that you can set to False if
the object being referenced (such as a table) does not exist when the package is being
designed. This property is most commonly used for source or destination adapters when,
for example, a destination table is created during package execution.

Lesson 1: Defining Data Sources and Destinations

183

184

Defining Data Flow Destination Adapters

Data flow destinations are similar to sources in that they use project or package connections.
However, destinations are the endpoints in a data flow task, defining the location to which
the data should be pushed. If you want to write data to a flat file or to a specific table inside a
SQL Server instance, you must select the appropriate destination adapter. In the SSIS Toolbox,
you can also see some additional destinations that do not have matching data source adapt-
ers, and vice versa (for example, the CDC source adapter does not have a matching destina-
tion). You can use the new Destination Assistant component or directly select the destination
adapter you need. Table 5-2 describes the data destinations available in the data flow task.

TABLE 5-2 Data Flow Destinations and Their Uses

Data flow destination

ADO.NET destination

Data Mining Model Training

DataReader destination

Dimension Processing
Excel destination

Flat File destination

ODBC destination

OLE DB destination

Partition Processing

Raw File destination

Recordset destination

SQL Server Compact destination

SQL Server destination

Purpose

Used to insert data through an ADO.NET provider.

Allows you to pass data from the data flow into a data mining model
in SSAS.

Lets you pass data in a ADO.NET recordset that can be programmatically
referenced.

Loads and processes a SQL Server Analysis Services dimension.
Used for writing data into a specific sheet in Excel.

Allows insertion of data to a flat file such as a comma-delimited or tab-
delimited file.

Allows you to insert data by using an ODBC provider. This is a new com-
ponent in SQL Server 2012. It supports a batch or row-by-row data access
mode for inserting the data. In a data warehouse environment, the batch
mode is recommended, because of large volumes of data.

Uses the OLE DB provider to insert rows into a destination system that
allows an OLE DB connection.

Allows an SSAS partition to be processed directly from data flowing
through the data flow.

Stores data in native SSIS format as a binary file. Very useful in scenarios
when you need to temporarily stage data—for example, when the des-
tination server is not available and you do not want to or cannot process
the source data again. In SQL Server 2012, the Raw File destination can
save all kinds of information (including the comparison flags for string
columns).

Takes the data flow data and creates a recordset in a package variable of
type object. The data can be used outside the data flow by other control
flow objects.

Lets you send data to a mobile device running SQL Mobile.

Provides a high-speed destination specific to a local SQL Server database.
The SSIS package must be running on the same server as the SQL Server
database used for the destination.

Designing and Implementing Data Flow

EXAM TIP

You can configure the OLE DB destination adapter (and now, with SQL Server 2012, also the
ODBC destination adapter) to insert data from the data flow through bulk batches of data,
instead of one row at a time. To use this destination-optimization technique for OLE DB,
edit the OLE DB destination and set the data access mode to Table Or View—Fast Load. For
ODBC, edit the ODBC destination and set the data access mode to Table Name—Batch. If
the destinations are not configured with fast load or batch load, only one row at a time will
be inserted into the destination table.

Configuring the Data Flow Destination Adapter

Before you configure a data destination adapter, you must have at least one source destina-
tion inside the data flow task. Figure 5-4 shows a simple data flow with one source and one
destination. The data flow extracts records from the Person.Person table inside the Adventure-
Works2012 database and inserts them into the stg.Person table inside the TK463DW database.

| | Person
»

|
stgPerson
L@

FIGURE 5-4 A simple data flow extracting the data from a source adapter and writing it to a destination
adapter.

Between the source and the destination adapter is a data flow path. It connects the output
of one component to the input of another component. Paths define the sequence of all com-
ponents inside the data flow (source adapters, transformations, and destination adapters) and
let you add annotations to the data flow, resolve references between columns, or view the
source of the column, as you shall see later in this chapter.

Like the source, the destination adapter requires configuration. Usually it is better to first
connect the data flow path to the destination adapter so that you can also specify the map-
pings you want between columns. As shown in Figure 5-5, for an OLE DB destination, you
must specify the connection manager and the destination table.

Note that by default an OLE DB destination sets the data access mode to the Table Or
View—Fast Load option in the drop-down list. This means that the rows will be processed
with bulk insert statements rather than one row at a time. Also by default, the Table Lock
check box is selected, which means that at the time of writing the data, a TABLOCK is acquired

Lesson 1: Defining Data Sources and Destinations

185

on the table. This removes the overhead of lock escalation, but if you are simultaneously writ-

ing from multiple data flows to the same table, you must disable this option or you will get an
error at run time.

=T

Configure the properties used ko insert data into a relational database using an OLE DB provider,

Specify an OLE DB connection manager, a data source, or a data source view, and select the data
access mode, If using the SQL command access mode, specify the SQL command either by byping
the query or by using Query Builder, For fast-load data access, set the table update options.

Error Outpuk

OLE DB connection manager:

| TKAE3DMW =] Mew... |

Data access mode:

ITabIe or view - fast load j

Mame of the table or the view:

I = [stgl.[Person] j Mew, .. |

" Keep identity vV Table lock

" Keep rulls V¥ Check congtraints
Rows per batch: I—
Maximum insert commit size: W

iew Existing Data. .. |

OF I Cancel Help

FIGURE 5-5 The Connection Manager tab of the OLE DB Destination Editor.

Figure 5-6 shows the Mappings tab of the same OLE DB Destination Editor. Here you map
the columns available for the data flow to the destination columns in the destination adapter.
Every destination adapter has a Mappings tab.

If you do not want to map one of the columns, you can set the source value to <ignore> in
the Input Column area on the Mappings tab. The same applies for destination columns.

NOTE THE NOT NULL CONSTRAINT

If the destination table has a NOT NULL constraint on a specific column and you ignore
that column, you can get an error and the package will fail at the destination adapter.

186 Designing and Implementing Data Flow

=T

Configure the properties used ko insert data into a relational database using an OLE DB provider,

Connection Manager
Error Qukput Name = MNarme I

BusinessEntitylD | BusinessEntiviD
PersonType T ——————| PermonTupe
Firsttd ame — Title
it T Firsttd ame
Lasthame T MiddleN ame
Stz T Lasth ame
EmailPromotion | T Suiffis
ModifiedD ate W odifiedD ate
Title i

Input Colurnn I Destination Colurnn

BusinessEnkibyID BusinessEnkibyID

PersonType PersonType

Title Title

Firsthame Firsthame

MiddleMarme MiddleMarme

LastMame LastMame

Suffix Suffix

ModifiedDate ModifiedDate

OF I Cancel Help

FIGURE 5-6 Mapping columns to the destination adapter in the OLE DB Destination Editor.

4

SSIS Data Types

To better understand data source and data destination adapters, consider how SSIS manages
different data types. When you use a data source adapter, the source data types are mapped
to common SSIS data types. This means that after the data source adapter retrieves the data,
all operations inside the data flow task are done on SSIS data types. You can have multiple
databases, files, and so on, each with specific data types; the data flow engine will convert
each data type to an appropriate SSIS data type. For example, numeric data is assigned a
numeric data type, string data is assigned a character data type, and dates are assigned a
date data type. Other data, such as GUIDs and Binary Large Object Blocks (BLOBs), are also
assigned appropriate data types. If the data has a data type that is not convertible to an Inte-
gration Services data type, an error occurs.

Lesson 1: Defining Data Sources and Destinations

187

MORE INFO SSIS DATA TYPES

For detailed information about each SSIS data type, see “Integration Services Data Types”
at Books Online for SQL Server 2012 at http://msdn.microsoft.com/en-us/library
/ms141036(v=sql.110).aspx.

This means that at design time the data flow knows exactly how much memory it needs for
each row from a specific data source adapter. To view or change how data is mapped to SSIS
data types, right-click a source adapter and select Show Advanced Editor. Figure 5-7 shows
the Input And Output Properties tab of the Advanced Editor for the data source adapter. Here
you can expand the Source Output and, under Output Columns, look at or modify each SSIS
data type under Data Type Properties. You can see that the FirstName column was mapped to
a Unicode string [DT_WSTR] SSIS data type with a length of 50 characters.

l Advanced Editor for Person

The advanced editor provides access to the low-level properties of data flow components. Additionally, the advanced editor can be used to
configure components that do not have a custom user interface,

=0l x|

Conneckion Managers | Component Properties | Column Mappings Input and Qutput Properties

Specify properties For the inputs and outputs of the data flow component.
Inputs and outputs:
E|_§,> OLE DB Source Oubput E Common Properties
[External Columns ComparisonFlags
=3 ©utput Columns Description
_____ _§:> BusinessEntityID ErrorCrTruncationCper ation Conversion
_____ = PersonType ErrorRowDisposition RD_FailComponent
, ExternalMetadataColumnID 27
----- = Middielamne D 1
IdentificationString Person, Outpubs[OLE DB Source Output].d
----- _§',> LastMarne .
_§',> Suffis LineagelD 16
MappedColumnID o
----- = EmailPromotion N
- Mame Firsthame
""" = I\"!odlﬁedDate SortkeyPosition o
""" = Title SpecialFlags o
E‘—§r> OLE DB Source Errar Output TruncationRowDisposition RD_FailCormponent
- Output Columns E Data Type Properties
CodePage o
DataType Unicode string [DT_WSTR]
Length 50
Precision o
Sicale]
D
Add Output | Add Column |
Remoyve Gutpuk | Remave Column |

Refresh |

o]

Cancel Help

FIGURE 5-7 The Input And Output Properties tab of the Advanced Editor.

Designing and Implementing Data Flow

http://msdn.microsoft.com/en-us/library/ms141036(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms141036(v=sql.110).aspx

¥ Quick Check

® You need to migrate a user-created Microsoft Access database to SQL Server, but
the data flow SSIS Toolbox does not contain an Access source adapter. How do you
import this data into SQL Server?

Quick Check Answer

m Although it is not listed in the toolbox, Access is one of the many database sources
and destinations that SSIS works with. To extract data from Access, you have three
choices: You can use the new ODBC source adapter, create a package connection
to the Microsoft Jet OLE DB Provider, or use the OLE DB source adapter.

Using Fast Parse

Fast Parse is a set of operations within SSIS that can be used for very fast loading of flat file
data. When you are loading data using the Flat File source adapter and you do not need to
parse any locally sensitive data (such as date formats, decimal symbols such as the comma, or
currency symbols), SSIS can use the Fast Parse option to load data very quickly. Fast Parse is
supported only on a subset of date, time, and integer formats.

To set the Fast Parse property, use the Advanced Editor:

4.

Right-click the Flat File source and then click Show Advanced Editor.
In the Advanced Editor dialog box, click the Input And Output Properties tab.

In the Inputs And Outputs pane, click the column for which you want to enable Fast
Parse.

In the properties window, expand the Custom Properties node, and then set the
FastParse property to True.

This option is available on the column level, which means that some of the columns can be
locale sensitive and some not.

IMPORTANT OPTIMIZING PACKAGES USING FAST PARSE

Fast Parse has limited functionality, because it works only for specific data types. But if

you have a lot of columns of date, time, or integer data types or very large files, Fast Parse
is the fastest method for importing data files. On the projects we have worked on, we got
more than 20 percent faster loading times, so use it when you have to optimize your pack-

ages. Note that Fast Parse is also available in the Data Conversion transformation.

Lesson 1: Defining Data Sources and Destinations

189

190

Implementing Simple Data Flows

In this practice, you will start building your ETL process to load data into a data warehouse.
You will first create appropriate tables for staging the data (the data staging area) from differ-
ent source systems and then build simple data flows to transfer the data to those stage tables.
You will use a specific schema named stg inside the TK463DW database for the staging area.
The source data will be from the AdventureWorks2012 database and from flat files.

If you encounter a problem completing an exercise, you can install the completed projects
from the Solution folder that is provided with the companion content for this chapter and
lesson.

EXERCISE 1 Create a Data Flow to Stage the Person.Person Table

In the first exercise, you first re-create a SQL Server database called TK463DW for your data
warehouse and create a database schema named stg to store the tables for a data staging
area. Then you will create a data flow task to copy the Person.Person table to the staging area.

1. Start SSMS and connect to your SQL Server instance. Open a new query window by
clicking the New Query button.

2. You will re-create the database you originally created in Chapter 2, “Implementing
a Data Warehouse,” because you do not need all of the additional objects that were
added in that chapter. Execute the T-SQL code shown here to re-create the database.

USE master;
IF DB_ID('TK463DW') IS NOT NULL
DROP DATABASE TK463DW;
GO
CREATE DATABASE TK463DW
ON PRIMARY
(NAME = N'TK463DW', FILENAME = N'C:\TK463\TK463DW.mdf",
SIZE = 307200KB , FILEGROWTH = 10240KB)
LOG ON
(NAME = N'TK463DW_Tog', FILENAME = N'C:\TK463\TK463DW_Tlog.1df"',
SIZE = 51200KB , FILEGROWTH = 10%);
GO
ALTER DATABASE TK463DW SET RECOVERY SIMPLE WITH NO_WAIT;

3. Create a schema named stg and specify the dbo as the owner of the schema.

USE TK463DW;

GO

-- Create the schema stg to stage all needed source tables
CREATE SCHEMA stg AUTHORIZATION dbo;

4. Create the first staging table, stg.Person.

CREATE TABLE stg.Person

(
BusinessEntityID INT NULL,
PersonType NCHAR(2) NULL,

Designing and Implementing Data Flow

10.

11.

12.

13.

14.

Title NVARCHAR(8) NULL,

FirstName NVARCHAR (50) NULL,
MiddTeName NVARCHAR(50) NULL,
LastName NVARCHAR (50) NULL,
Suffix NVARCHAR (10) NULL,

ModifiedDate DATETIME NULL
)

If necessary, start SQL Server Data Tools (SSDT). Then open the TK 463 Chapter 5 proj-
ect in the Starter folder and open the FillStageTables.dtsx package for editing.

On the Control Flow tab of the SSIS Designer, you will notice a sequence container and,
under Connection Managers, two connections, one for AdventureWorks2012 and one
for the TK463DW database. First drag the Execute SQL task from the SSIS Toolbox into
the sequence container object. Edit the Execute SQL task by double-clicking the task
icon or by right-clicking the task icon and then clicking Edit.

Change the Connection property to use the TK463DW connection.

In the SQL Statement property of the Execute SQL Task Editor dialog box, type the
following code.

TRUNCATE TABLE stg.Person;

Click OK in the Execute SQL Task Editor dialog box. Right-click the Execute SQL task,
click Rename, and type Truncate Table stgPerson.

Next drag a data flow task from the SSIS Toolbox into the sequence container object.
Rename the data flow task to Insert stgPerson.

Drag the output arrow from the Truncate Table stgPerson task onto the data flow task
named Insert stgPerson. The output arrow is green, which means that it represents a
precedence constraint (see Chapter 4, "Designing and Implementing Control Flow,” for
more information about precedence constraints).

Click the Data Flow tab at the top of the SSIS Designer. In the SSIS Toolbox, drag OLE
DB Source, located under Other Sources, onto the data flow workspace. Right-click the
OLE DB source item and then click Edit to open the OLE DB Source Editor dialog box.

Select AdventureWorks2012 in the OLE DB Connection Manager list. In the Data Ac-
cess Mode drop-down list, select Table Or View, and select the Person.Person table
in the Name Of The Table Or The View drop-down list. Click OK. Rename the OLE DB
Source Person.

In the SSIS Toolbox, drag the OLE DB Destination object onto the data flow design
surface. Connect the output of the OLE DB source named Person to the new OLE DB
destination object by dragging the blue output arrow from the OLE DB source onto
the OLE DB destination adapter. Rename the OLE DB destination adapter stgPerson.

Lesson 1: Defining Data Sources and Destinations 191

192

15. Double-click stgPerson to display the OLE DB Destination Editor dialog box. Set the

OLE DB connection manager to TK463DW and, under Data Access Mode, select Table
Or View—Fast Load. Select the stg.Person table.

16. On the Mappings tab of the OLE DB Destination Editor, check to make sure that all

destination columns are mapped to input columns. Click OK.

17. Execute the FillStageTables.dtsx package. Observe the execution to confirm successful

completion of this exercise.

EXERCISE 2 Use an ODBC Source Adapter to Stage the Sales.Customer Table

In this exercise, you will create a similar data flow task, this time with ODBC data source and

destination adapters.

1.

Start SSMS and connect to your SQL Server instance. Open a new query window by click-
ing the New Query button. Select the TK463DW database in the database drop-down
list. Create the stg.Customer staging table by executing the following SQL statement.

CREATE TABLE stg.Customer
(

CustomerID INT NULL,
PersonID INT NULL,
StoreID INT NULL,
TerritoryID INT NULL,
AccountNumber NVARCHAR(20) NULL,
ModifiedDate DATETIME NULL,

)

If necessary, start SSDT. Then open the TK 463 Chapter 5 project and open the
FillStageTables.dtsx package from the previous exercise for editing.

Add an ODBC connection manager by right-clicking the Connection Managers folder
in the Solution Explorer window and selecting New Connection Manager.

A. In the Add SSIS Connection Manager window, select the ODBC connection man-
ager type and click Add. In the Configure ODBC Connection Manager dialog box,
click New. Select the Use Connection String option and then click Build.

B. Select the Machine Data Source tab and click New. In the Create New Data Source
dialog box, select System Data Source, and click Next. Select the SQL Server Native
Client 11.0 driver, click Next, and then click Finish.

C. Inthe Create A New Data Source To SQL Server dialog box, type TK463DW_ODBC
as the name and, under Server, type localhost. Then click Next. Select With Inte-
grated Windows Authentication and click Next. Change the default database to
TK463DW, click Next, and then click Finish.

D. Test the data source and then click OK. In the SQL Server Login window, just
click OK. In the Connection Manager window, click OK. You should now see
TK463DW_ODBC under Connection Managers in the Solution Explorer window.

Designing and Implementing Data Flow

10.

11.

12.

13.

14.

15.

16.

Repeat the process to add the AdventureWorks2012_ODBC ODBC connection man-
ager. Change the default database to AdventureWorks2012 when you are setting up
the ODBC connection manager.

Drag the Execute SQL Task from the SSIS Toolbox into the sequence container object.
Edit the Execute SQL task by double-clicking the task icon or by right-clicking the task
icon and then clicking Edit.

Change the Connection property to use the TK463DW_ODBC connection.

In the SQL Statement property of the Execute SQL Task Editor dialog box, type the
following code.

TRUNCATE TABLE stg.Customer;

Click OK in the Execute SQL Task Editor dialog box. Right-click the SQL Task, click
Rename, and type Truncate Table stgCustomer.

Next drag a data flow task from the SSIS Toolbox into the sequence container object.
Rename the data flow task to Insert stgCustomer.

Drag the output arrow from the Truncate Table stgCustomer task onto the data flow
task named Insert stgCustomer.

Double-click the Insert stgCustomer data flow task. This will open the Data Flow tab. In
the SSIS Toolbox, drag ODBC Source, located under Other Sources, onto the data flow
workspace. Right-click the ODBC source item and then click Edit to open the ODBC
Source Editor dialog box.

Select AdventureWorks2012_ODBC in the ODBC Connection Manager list. In the Data
Access Mode drop-down list, select Table Name, and then select the Sales.Customers
table in the Name Of The Table Or The View drop-down list. Click OK. Rename the
ODBC Source to Customer.

In the SSIS Toolbox, drag the ODBC Destination object onto the data flow design
surface. Connect the output of the ODBC source named Customer to the new ODBC
destination object by dragging the blue output arrow from the ODBC source onto the
ODBC destination adapter. Rename the ODBC destination adapter stgCustomer.

Double-click stgCustomer to display the ODBC Destination Editor dialog box. Set the
ODBC connection manager to TK463DW_ODBC and, under Data Access Mode, select
Table Name—-Batch. Select the stg.Customer table.

On the Mappings tab of the ODBC Destination Editor, check to make sure that all desti-
nation columns are mapped to input columns. Click OK.

Execute the FillStageTables.dtsx package. Observe the execution to confirm successful
completion of this exercise.

Lesson 1: Defining Data Sources and Destinations

193

194

EXERCISE 3 Import Data from Flat Files

In this exercise, you will load additional customer information data that is supplied as a flat
file. You will stage this data into the stg.Customerinformation table.

1.

Start SSMS and connect to your SQL Server instance. Open a new query window

by clicking the New Query button. Select the TK463DW database in the database
drop-down list. Create the stg.Customer staging table by executing the following
SQL statement.

CREATE TABLE stg.CustomerInformation
(
PersonID INT NULL,
EnglishEducation NVARCHAR(30) NULL,
EnglishOccupation NVARCHAR(50) NULL,

BirthDate DATE NULL,

Gender CHAR(1) NULL,
MaritalStatus CHAR(1) NULL,
EmailAddress NVARCHAR(50) NULL
s

If necessary, start SSDT. Then open the TK 463 Chapter 5 project and open the
FillStageTables.dtsx package from the previous exercise for editing.

Drag the Execute SQL task from the SSIS Toolbox into the sequence container object.
Edit the Execute SQL task by double-clicking the task icon or by right-clicking the task
icon and then clicking Edit.

Change the Connection property to use the TK463DW connection.

In the SQL Statement property of the Execute SQL Task Editor dialog box, type the
following code.

TRUNCATE TABLE stg.CustomerInformation;

Click OK in the Execute SQL Task Editor dialog box. Right-click the Execute SQL task,
click Rename, and type Truncate Table stgCustomerinformation.

Next, drag a data flow task from the SSIS Toolbox into the sequence container object.
Rename the data flow task Insert stgCustomerinformation.

Drag the output arrow from the Truncate Table stgCustomerinformation task onto the
data flow task named Insert stgCustomerinformation.

Click the Data Flow tab at the top of the SSIS Designer. In the Data Flow Task drop-
down list, select Insert stgCustomerlnformation. In the SSIS Toolbox, drag the Flat File
Source, located under Other Sources, onto the data flow workspace. Right-click the Flat
File source item and then click Edit to open the Flat File Source Editor dialog box.

Designing and Implementing Data Flow

10. Set the new Flat File connection manager by clicking the New button. In the Flat File
Connection Manager Editor, type CustomerInformation for the Connection Manager
Name and, under File Name, click Browse. In the Open dialog box, find the Customer-
Information.txt file under Chapter05\Code, and click Open. Set the Locale to English in
the drop-down list, and check Unicode. Select the Columns tab in the Flat File Con-
nection Manager Editor and notice that some of the columns are empty, as shown in
Figure 5-8.

B Flat File Connection Manager Editor o =] B3
Conneckion manager name: ICustomerInFormation
Description: I
m —Specify the characters that delimit the source File:
E;l\tl;:jcid Row delimiter: j
3 Preview Column delimiter: j

Preview raws 2-101:

PersonID | EnglishEducation | EnglishOccupat, .. | BirthDate Gender MaritalStatus | Emailaddress Iﬂ

300 Bachelors Professional 8.4, 1966 il il jonz4@adven.. .

301 Bachelors Professional 1451965 M 5 eugene10@ad. ..

302 Bachelors

303 Bachelors Professional 15.2,1968 F 5 christy12@ad. ..

304 Bachelors Professional 8.8.1968 F 5 elizabethS@a...

305 Bachelors Professional

306 Bachelors Professional 6,12,1965 | F 5 janeta@adve. ..

307 Bachelors Professional 9.5.1964 M M marcol4@ady...

308 Bachelors Professional 7.7.1964 F 5 robd4@advent...

309 Bachelors Professional 1.4.1964 M 5 shannon3g@a... LI

Refresh | Reset Columns |

OF I Cancel | Help |

FIGURE 5-8 A preview of loaded columns in the Flat File Connection Manager Editor.

11. Open the source file in Notepad. Note the lack of multiple trailing semicolons after
Bachelors in the fourth row for the missing column information, as shown in Figure 5-9.
Prior to SQL Server 2012, SSIS would ignore any row delimiter until it believed it was
parsing the last column of the row.

Lesson 1: Defining Data Sources and Destinations 195

196

12.

13.

14.

15.

I8 customerInformation.txt - Notepad i]]

File Edit Format Wiew Help

PersonIiD; EnglisheEducation; Englishoccupation;Birthpate;Gender;Maritalstatus; Emailaddress fj
300;Bachelors;Professional; 8.4.1966;M;M; jon24@adventure-works. com

301;Bachelors; Professional;1d4. 5.1965;M; 5; eugenel0@adventur e~works. com
202;Bachelors;

303;Bachelors; professional;15.2.1968; F; S; christyl2@adventure-works. com
304 ;Bachelors; Professional; 8. 8.1968;F; 5;elizabethiBadventure-works. com
305;Bachelors; Professional;

306;Bachelors; Professional; 5.12.1965; F;5; janetS@adventure-works. com
207;Bachelors; professional; 9. 5.1964;M;M;mar cold@adventure-works. com
308;Bachelors;Professional;7.7.1964;F; 5;robd@adventure-works. com
309;Bachelors;Professional;l.4.1964;m; 5; shannon38@adventure-works. com
310;Bachelors;Professional; ;6. 2.1%964;F; 5; Jacquelyn208adventure-warks. com
311;Bachelors;professional;4.11.1963;M;M; curtisbBadventure—works. com
312;Bachelors;Management;18.1.1968; F;M; laurend l@adventure-works. com
313;Bachelors;Management; 6. 8.1968; M;M; 1and 7adventure-works. com

K| "

FIGURE 5-9 Missing columns in the text file.

NOTE SUPPORT FOR DELIMITED FILES WITH VARYING NUMBERS OF COLUMNS

The Flat File source now supports delimited files with varying numbers of columns per
row (these are sometimes called “ragged-right” delimited files) and delimited files with
embedded qualifiers. This new behavior for “ragged-right” delimited files is on by de-

fault but can be disabled by setting the AlwaysCheckForRowDelimiters property in the
connection manager.

Click the Advanced tab and notice that all columns have the same value for the
DataType property. Click Suggest Types and, in the Suggest Column Types dialog

box, specify that 20,000 rows should be scanned. Click OK. This will now set minimum
required DataTypes for all columns. SSIS will now define the minimum length or size of
the data type based on 20,000 rows.

IMPORTANT ALWAYS DEFINE PROPER DATA TYPES

When you are loading data using the Flat File source adapter, always define proper data
types in the Flat File connection manager on the Advanced tab.

Click OK to close the Flat File Connection Manager Editor, and click OK in the Flat File
Source Editor. Rename the Flat File source Customerinformation.

In the SSIS Toolbox, drag the OLE DB Destination object onto the data flow design
surface. Connect the output of the Flat File source named Customerinformation to the
new OLE DB destination object by dragging the blue output arrow from the Flat File
source onto the OLE DB destination adapter. Rename the OLE DB destination adapter
stgCustomerinformation.

Double-click stgCustomerlnformation to display the OLE DB Destination Editor dialog
box. Set the OLE DB connection manager to TK463DW and, under Data Access Mode,
select Table Or View—Fast Load. Select the stg.Customerinformation table.

Designing and Implementing Data Flow

16. On the Mappings tab of the OLE DB Destination Editor, check to make sure that all
destination columns are mapped to input columns. Click OK.

17. Execute the FillStageTables.dtsx package. Observe the execution to confirm successful
completion of this exercise.

NOTE CONTINUING WITH PRACTICES

Do not exit SSMS if you intend to continue immediately with the next practice.

NOTE UNDO AND REDO OPERATIONS NOW SUPPORTED IN SQL SERVER 2012

Versions of SQL Server before SQL Server 2012 did not support Undo and Redo operations.
After you performed an operation, you could not undo it. Now, in SSIS 2012, you can use
the Undo and Redo functionality when creating a data flow.

Lesson Summary
m Use appropriate data source or data destination adapters.
m Always extract only the columns you need.

m Use Fast Load or Batch mode when inserting data by using an ODBC or OLE DB desti-
nation adapter.

m Use a Raw File destination if you have to temporarily store data to be used by SSIS
later.

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1. Which data flow source adapters can you use if you would like to read data from SQL
Server? (Choose all that apply.)

A. ADO NET source
B. Raw File source
C. OLE DB source
D. ODBC source

Lesson 1: Defining Data Sources and Destinations 197

2. Which data flow destinations can you use if you would like to temporarily stage data to
a file system? (Choose all that apply.)

A. OLE DB destination

B. Flat File destination

C. Raw File destination

D. Recordset destination

3. Which statements are true regarding data source adapters? (Choose all that apply.)

A. You can change how source data is mapped to SSIS data types.

B. You can have only one data source adapter per data flow task.

You must always select all columns from the source adapter.

D. You can read data from an XML file by using SSIS.

Lesson 2: Working with Data Flow Transformations

) Transformations give you the ability to modify and manipulate data in the data flow. You
can perform a wide variety of transformations. It is important that you understand what
each transformation does and how it affects the whole data flow in terms of data processing
requirements and performance.

After this lesson, you will be able to:
m Create a data flow task with transformations.
m Understand the difference between transformations.

m Use appropriate transformations for specific tasks.

Estimated lesson time: 80 minutes

Selecting Transformations

A transformation can operate on one row of data at a time or on several rows of data at once.
The operations of some transformations are similar to others; therefore, the transformations
can be categorized into natural groupings of similar components. In addition to this natural
grouping, this lesson describes the type of blocking that occurs inside the data flow task for
each transformation. This foundation will help later in the book when optimization techniques
are discussed (in Chapter 13, “Troubleshooting and Performance Tuning”), because blocking
behavior has a direct impact on memory consumption.

198 Designing and Implementing Data Flow

o)

There are three types of blocking:

m In non-blocking transformations, each row is passed through the transformation with-
out any waits.

m A partial-blocking transformation waits until a sufficient number of rows is stored and
then it passes them through.

® In a blocking transformation, all rows must be read into the transformation before the
transformation can pass them through.

This book uses the letters N for non-blocking, P for partial-blocking, and B for blocking
transformations in the tables in the following sections.

Logical Row-Level Transformations

The most common and easily configured transformations are logical row-level transforma-
tions, which perform operations on the row level without needing other rows from the source.
These transformations, which logically work at the row level, often perform very well. Table 5-3
describes the logical row-level transformations.

Some common uses of this type of calculation in data warehouse scenarios include the
creation of calculated columns from multiple source columns, mathematical calculations, con-
version of data type values, and the replacement of NULL with other values. In terms of per-
formance and increased workload, the Import Column and Export Column transformations
are different than other logical row-level transformations. Both of them allow you to read or
write a specific column as a binary data type. For example, by using the Import Column trans-
formation, you can add images stored in separate files to a data flow.

TABLE 5-3 Logical Row-Level Transformations

Data flow transformation Purpose Blocking type
Audit Adds additional columns to each row based on sys- N

tem package variables such as ExecutionStartTime and

PackageName.
Cache Transform Allows you to write data to a cache with the Cache con- N

nection manager. The data can then be used by the
Lookup transformation. This is useful if you are using
multiple Lookup transformations against the same data,
because SSIS will cache the needed data only once and not
for each Lookup component.

Character Map Performs common text operations such as Uppercase and N
allows advanced linguistic bit-conversion operations.

Copy Column Duplicates column values in each row to a new named N
column.

Data Conversion Creates a new column in each row based on a new data N

type converted from the existing column. An example is
converting text to numeric data or text to Unicode text.

Lesson 2: Working with Data Flow Transformations

199

200

Data flow transformation Purpose Blocking type

Derived Column Creates or replaces a column for each row based on a N
specified SSIS expression. This is the most often used
logical row-level transformation because it enables
the replacement of column values or the creation of
new columns based on existing columns, variables, and
parameters.

Export Column Exports binary large objects (BLOB) columns, onerow ata | N
time, to a file.

Import Column Loads binary files such as images into the pipeline; intend- | N
ed for a BLOB data type destination.

Row Count Tracks the number of rows that flow through the transfor- | N
mation and stores the number in a package variable after
the final row.
EXAM TIP

When inserting data into data warehouse tables, you should check for NULL inside each
column and replace it with a value that represents an “unknown” or default value. With the
Derived Column transformation, you can check for NULL by using an SSIS conditional expres-
sion. You replace the existing column coll value with the expression ISNULL(col1) ? 0 : coll.
The expression will check first to see whether coll is NULL and if it is, the expression will put
the value O for the column coll; if it is not NULL, the coll column value will stay the same. In
SQL Server 2012 SSIS, you can do this more elegantly by using the new REPLACENULL (col1, 0)
function.

On the other hand, if you would like to put NULL inside the column, you must use the ap-
propriate SSIS NULL function for the specific data type. For example, if you would like to
store NULL inside a 4-byte signed integer column, you must use the NULL(DT_I4) function.

Multi-Input and Multi-Output Transformations

Multi-input and multi-output transformations can work with more than one data input or can
generate more than one output, respectively. These transformations enable you to combine

multiple branches of data flow paths into one or create multiple branches of data flow paths

from one. Table 5-4 lists the multi-input and multi-output transformations.

In data warehouse scenarios, you will use these types of transformations a lot. One com-
mon scenario is using the Lookup component with Full Cache mode when inserting data into
a fact table. The Lookup transformation works very well for acquiring the appropriate surro-
gate key from the dimension table in these cases (except on very large dimension tables with
more than 10 million rows; for these, Merge Join would be a better choice).

Designing and Implementing Data Flow

x)

TABLE 5-4 Multi-Input and Multi-Output Transformations

Data flow
transformation

CDC Splitter

Conditional Split

Lookup

Merge

Merge Join

Multicast

Union All

Purpose

Splits a single flow of changed rows from the CDC source
component into multiple data flows based on the type of the
source data change (that is, whether it is an insert, update,
or delete operation). CDC Splitter routes the data based on
the __$operation column into three possible outputs. this
transformation is like a specific version of the Conditional
Split transformation that automatically handles the standard
values of the __$operation column.

Routes or filters data based on a Boolean expression to one
or more outputs, from which each row can be sent out only
one output path.

Performs a lookup operation between a current row and an
external dataset on one or more columns. Additional columns
can be added to the data flow from the external dataset.

Combines the rows of two similar sorted inputs, one on top of
the other, based on a defined sort key.

Joins the rows of two sorted inputs based on a defined join
column or columns, adding columns from each source.

Generates one or mode identical outputs, from which every
row is sent out every output. This transformation creates a
logical copy of the data.

Combines one or more similar inputs, stacking rows one on
top of another, based on matching columns. The number of
rows in the output of Union All is the combined row counts of
all the inputs.

Blocking type
N

As Table 5-4 describes, the Merge and Merge Join transformations require sorted inputs.
Both of them are partially blocking, which means that rows might not immediately be sent
out the output path. This is because the transformation waits for rows from either input,
based on the defined sort order, to preserve the sorted output or match across sorted rows.

EXAM TIP

The Merge Join transformation can match more than one row across the join columns. It

behaves the same as the T-SQL Join clause; you can specify an inner join, a full outer join, or

a left outer join. Remember that this transformation can be used only if both source inputs

are sorted on the same column or columns.

Lesson 2: Working with Data Flow Transformations

201

¥ Quick Check

m What is the difference between the Union All and the Merge transformation?

Quick Check Answer

m The Merge transformation is similar to Union All, but with Merge, the sources have
to be sorted and the sort position is preserved.

Multi-Row Transformations

¢ j Multi-row transformations perform work based on criteria from multiple input rows or gener-
ate multiple output rows from a single input row. Multi-row transformations can be more
intensive in operation and memory overhead but are crucial for meeting business require-
ments. Table 5-5 lists the multi-row transformations.

The two most often used multi-row transformations are Aggregate and Sort. The Aggre-
gate transformation is used in data warehousing environments for populating data marts of
high granularity. For example, consider an enterprise data warehouse data mart that has daily
data and for which the finance department requires a monthly report; for this data mart, you
would want to aggregate the data on a monthly basis. As another example, the Sort compo-
nent is used when you want to use the Merge Join transformation and the source data flow is
not sorted.

TABLE 5-5 Multi-Row Transformations

Data flow

transformation Purpose Blocking type

Aggregate Associates rows based on defined grouping and generates B
aggregations such as SUM, MAX, MIN, and COUNT.

Percent Sampling Filters the input rows by allowing only a defined percent to N
be passed to the output path.

Pivot Takes multiple input rows and pivots the rows to generate an | P
output with more columns based on the original row values.

Row Sampling Generates a fixed number of rows, sampling the data from B
the entire input, no matter how much larger than the defined
output the input is.

Sort Orders the input based on defined sort columns and sort B
directions. The Sort transformation also allows the removal
of duplicates across the sort columns.

Unpivot Takes a single row and generates multiple rows, moving P
column values to the new row based on defined columns.

202 Designing and Implementing Data Flow

In the cases of the Sort, Aggregate, and Row Sampling transformations, all the input rows
must be read before rows can be sent down the output path. This is why these transforma-
tions are fully blocked.

NOTE REMEMBER WHICH TRANSFORMATIONS ARE FULLY BLOCKED

Remember which transformations are fully blocked and try to use them only when abso-
lutely necessary, because they often require more memory and processor capacity. If you
are aggregating or sorting a data source input that will not fit into the server memory, the
performance will degrade by a factor of 100, because swapping to disk will occur.

The Pivot component has a new user interface in SQL Server 2012 that helps you set up the
information more easily than in previous versions. Figure 5-10 shows the new edit window.

In the new Pivot editor, you can specify the Pivot Key, Set Key, and Pivot Value. Each of
these is graphically positioned inside the pivot table so that you can understand what each
setting will do. Though it is not discussed here, an example package, PivotTransformation.dtsx
is provided with the companion content, inside the Visual Studio TK 463 Chapter 5 project.

Bew =Y

Pivot Key:
‘alues in the input data from this column will become
new column names in the output

Set Key:
Identifies a group of input rows that will get pivoted
into one output row, The input data must be sorted

on this colurn Pivot Yalue
L ‘Walues From this column will be mapped into the new
ProductID T pivot output columns
OrderCuantity j

r Ignore un-matched Pivot Key values and report them after DataFlow execution

Generate pivot output columns from values: Existing pivoted output columns:
Hink: choose ko ‘Tgnore’ un-matched Pivat Key values, execute this DataFlow in the C_2005_CrderQuantity
debugger and copy the walue list reported in the debugger's Oukput Window _2006_OrderQuantity

[value1],[valuez], [values] C_2007_OrderQuantity

C_2008_OrderQuantity

Generate Columnns Mo |
OF I Cancel Help |

FIGURE 5-10 The new Pivot editor.

Lesson 2: Working with Data Flow Transformations 203

IMPORTANT USING THE NEW PIVOT COMPONENT

When using the Pivot component, you must explicitly name all new columns based on
the distinct values of the column that is specified as the Pivot Key. If you select the Ignore
Un-Matched Pivot Key Values And Report Them After DataFlow Execution check box, the
component will not produce an error if some of the possible values were not specified as
new columns.

You cannot create “dynamic” pivoting (automatically adding new columns) by using this
component, because the data flow engine must have exact information about each column
that will be present in the data flow. The only workaround is to store all possible values in a
single column as XML or as a delimited set of values. In this way, you can create “"dynamic”
pivoting by using the Script component.

Advanced Data-Preparation Transformations

The last group of transformations lets you perform advanced operations on rows in the data
flow pipeline. Table 5-6 lists these advanced data-preparation transformations. Most of these
components will be covered in more detail in later chapters.

TABLE 5-6 Advanced Data-Preparation Transformations

Data flow transformation Purpose Blocking type

DQS Cleansing Validates rows by automatically per- P
forming data cleansing using an exist-
ing knowledge base in Data Quality
Services (DQS).

OLE DB Command Performs database operations such as N
updates or deletions, one row at a time,
based on mapped parameters from
input rows.

Slowly Changing Dimension Generates transformations necessary N
to support loading dimension tables
in data warehouse scenarios. This
transformation handles SCD (Slowly
Changing Dimension) Type 1 and Type
2 and also has support for inferred
members. Chapter 7 focuses on this
transformation.

Data Mining Query Applies input rows against a data min- P
ing model for prediction.

Fuzzy Grouping Performs de-duplication based on B
similarity of string values in selected
columns.

204 Designing and Implementing Data Flow

Data flow transformation

Fuzzy Lookup

Script Component

Term Extraction

Term Lookup

EXAM TIP

Purpose

Joins a data flow input to a reference
table based on column similarity. The
Similarity Threshold setting specifies
the closeness of allowed matches—a
high setting means that matching val-
ues are close in similarity.

Applies custom .NET scripting
capabilities against rows, columns,
inputs, and outputs in the data
flow pipeline. This is the most
powerful component. Chapter 19,
“Implementing Custom Code in
SSIS Packages” looks at some of its
possibilities.

Analyzes text input columns for
English-language nouns and noun
phrases.

Analyzes text input columns against a
user-defined set of words for associa-
tion.

Blocking type
B

With the Script Component, you can apply almost any kind of transformation to the data

flow pipeline. Its application can range from replacing multiple expressions by using multi-

ple Derived Column components to complex transformations using .NET code. You can use
Microsoft Visual Basic .NET (VB.NET) and Microsoft Visual C# as programming languages
with this component. SQL Server 2012 uses Microsoft Visual Studio Tools for Applications
(VSTA) 3.0 as the environment in which to write the scripts, and the component supports

Microsoft .NET 4.

Using Transformations

As with the source and destination adapters, you drag transformations from the SSIS Tool-

box onto the Data Flow tab of the SSIS Designer. Each transformation has an editor window
that defines the way the operation is applied to the data. You can open the editor either by

double-clicking a transformation or by right-clicking the transformation and then clicking

Edit. For example, the Derived Column transformation specifies an expression that generates
a new column in the data flow or replaces an existing column. In Figure 5-11, you can observe
that one new column, FullName, was added by concatenating the FirstName and LastName

columns by using the following SSIS expression.

[LastName] +

+ [FirstName]

Lesson 2: Working with Data Flow Transformations

205

206

The Derived Column transformation can also replace existing columns. In this example, the
Suffix column is replaced with an expression that checks whether the value is NULL and if it is,
returns “N/A"; otherwise, it returns the value of the column.

IDErived Column Transformation Editor =] 5]
Specify the expressions used ko create new column values, and indicate whether the values update existing columns or populate new columns.
3 Mathematical Functions
= [d Columns |4 String Funclions
=] BusinessEntitylD |3 Drate/Time Functions
=] PersonType 34 MULL Functions
=] MameStyle .3 Type Casts
=] Tite [7% Operatars
=] FirstMame
=] MiddleMame
=] LastMame
=] Suffix
=] EmailPromotion
=] AdditionalContactnfa
=] Demographics
=] rowguid
=] ModiiedDate Diesciiption:
Derived Column Mame | Derived Column I Expression Data Type I Length I Precision | Scale | Code Page
FullMame: <add as new columnz [LastMame] + " " + [Firsthame] Unicode string [DT_... 101
Suffix Replace "Suffix' ISMULL{Suffixc 7 "MPA" : Suffix Unicode string [DT_... 10
. | IO
Configure Error Output... | oK I Cancel | Help |
V.

FIGURE 5-11 The Derived Column Transformation Editor.

You apply the whole data flow logic by connecting data source adapters, transformations,
and data destination adapters, using data paths that you create by dragging the output arrow
onto another component in the data flow. Blue data path arrows are for rows that are suc-
cessfully transformed, and red output data path arrows are for rows that failed the transfor-
mation because of an error, such as a truncation or conversion error. Figure 5-12 shows part
of a data flow for updating a customer dimension.

Designing and Implementing Data Flow

TK 463 Chapter 5 - Microsoft ¥isual Studio (Administrator)
fle Edit View Project Buld Debug Data Format 5515 Inols Window Help

s A R N e s e o ol e
Ml DimCustomer desx [Design]*

., Control Flow (%] Data Flow | Parameters | Z Event Handlers |“: Package Explorer ‘ % Execution Results

Data Flow Task: |27 Dim Customer

| Sales

l 2 ¢ sp Temitory
7 Merge Join
1
L | Get Customer Lockup No Match Output

[_J= Information

Set default vals
Lmkip Match Gutput i~ et default values

Union All

]

| Check Customer Exists
5™

2 Lookup Match Output
Calc Columns
& _1—r
Conditional Split

|

New record

Dim Customer 1\,

La

Conneckion Managsrs
|| (project) AdventureWorks2012 | (project) AdventureWorks2012_ODEC | J (project) Tk4630W | J (project) TK483DW_ODEC

FIGURE 5-12 A data flow showing many transformations connected with data paths.

Resolving Column References

When the metadata about the columns in the data flow task changes, you must correct all the
column references. This usually happens when you add new columns from the source, remove
some columns inside specific transformations, or even delete specific transformations, requir-
ing you to remap the existing components.

In versions before SQL Server 2012, you had to fix the column reference errors before you
could open the transformation. This process of managing metadata in the data flow pipeline
is a concept with which many beginners struggle, especially when they make a change early
in the data flow that has a ripple effect to downstream components and causes metadata
errors. SSIS now includes a Resolve References editor that you can use to quickly resolve the
mapping of input and output columns between components. Figure 5-13 shows the new
editor, which you can open by right-clicking the data path between two transformations and
selecting Resolve Reference.

Lesson 2: Working with Data Flow Transformations

207

208

The Resolve References editor allows you to link unmapped output columns with un-
mapped input columns for all paths in the data flow path. You can also use it to check that
columns are mapped to one another properly and also to see which columns remain un-
mapped.

Resolve References =] |

Unmapped Output Columns Mapped Columns Unmapped Input Columns
H i 3 - e A 4 i
Source HEF EFxEE S ‘a 3% B Destination
AdditionalContactInfo ——
Demographics Source D
EmailPremation FirstName FirstName x
Full Name LastMame LastName x
NameStyle ——
rovguid ModifiedDate ModifiedDate =
Suffix BusinessEntityID BusinessEntityID x
PersonType PersonType x
[Title Title x
MiddleName MiddleName x
X

] jud]] i

Create column mapp

= Type column names into the ¢ the Mapped Columns table
« Drag column names from the Unmapped Input Columns table or the Available Destination Columns table into the Mapped Columns table

= Paste in mappings from Excel

[Delete Unmapped Input Columns Preview Changes... | 0K I Cancel |

4

FIGURE 5-13 The Resolve References editor, which helps quickly resolve the mapping of input and output
components.

NOTE RESOLVING A COLUMN REFERENCE ERROR

If you get a column reference error, you can now open any transformation, because error
fixing is done through data paths in the Resolve References editor. The editor also has an
option for pasting in mapping information from Excel.

Using Data Flow Transformations

In this practice, you will continue building the ETL process to load data into a data ware-
house. You will practice using the multiple transformations needed to load the data into
the dbo.Customers dimension table.

CHAPTER 5 Designing and Implementing Data Flow

If you encounter a problem completing an exercise, you can install the completed projects
from the Solution folder that is provided with the companion content for this chapter and
lesson.

EXERCISE 1 Prepare the dbo.Customers Dimension Table for Loading into
the Data Warehouse

In this exercise, you use several different transformations to prepare data before loading it
into a data warehouse dimension table.

1. If necessary, start SSMS and connect to your SQL Server instance. Open a new query
window by clicking the New Query button. Select the TK463DW database in the da-
tabase drop-down list. Use the following code to create the dbo.Customers dimension
table and a sequence object, and add a default constraint to the table to map the next
value from the sequence to the CustomerDwKey column. This will enable automatic
insertion of the surrogate key value when you are inserting data through SSIS.

-- Drop and create the sequence

IF OBJECT_ID('dbo.SeqCustomerDwKey','SO') IS NOT NULL
DROP SEQUENCE dbo.SeqCustomerDwKey;

GO

CREATE SEQUENCE dbo.SeqCustomerDwKey AS INT

START WITH 1

INCREMENT BY 1;

GO

-- Customers dimension with a PK
CREATE TABLE dbo.Customers
(

CustomerDwKey INT NOT NULL,
CustomerKey INT NOT NULL,
Ful1Name NVARCHAR(150) NULL,
EmailAddress NVARCHAR(50) NULL,
BirthDate DATE NULL,
MaritalStatus NCHAR(1) NULL,
Gender NCHAR (1) NULL,
Education NVARCHAR(40) NULL,
Occupation NVARCHAR(100) NULL,
City NVARCHAR(30) NULL,
StateProvince NVARCHAR(50) NULL,
CountryRegion NVARCHAR(50) NULL,

Age AS

CASE

WHEN DATEDIFF(yy, BirthDate, CURRENT_TIMESTAMP) <= 40

THEN 'Younger'

WHEN DATEDIFF(yy, BirthDate, CURRENT_TIMESTAMP) > 50

THEN 'Older’'
ELSE 'Middle Age'
END,

CurrentFlag BIT

NOT NULL DEFAULT 1,

CONSTRAINT PK_Customers PRIMARY KEY (CustomerDwKey)

s

Lesson 2: Working with Data Flow Transformations

209

GO

-- add default constraint to get surrogate key from sequence when inserting
through SSIS
ALTER TABLE dbo.Customers

ADD CONSTRAINT DFT_CustomerDwKey DEFAULT (NEXT VALUE FOR dbo.SeqCustomerDwKey)
FOR CustomerDwKey;
Asd

2. If necessary, start SSDT, open the TK 463 Chapter 5 project, and then add a new pack-
age and rename it DimCustomer.

3. Drag a data flow task from the SSIS Toolbox onto the control flow workspace. Rename
the data flow task Dim Customer.

4. Click the Data Flow tab at the top of the SSIS Designer. In the SSIS Toolbox, drag an
OLE DB source adapter onto the data flow workspace. Rename the OLE DB source
adapter StgPerson. Edit the source adapter and set an OLE DB connection manager to
TK463DW, setting the Data Access Mode to Table Or View and selecting the stg.Person
table.

5. Drag another OLE DB source adapter onto the workspace and rename it stgCustomer.
In the OLE DB Source Editor, set the OLE DB connection manager to TK463 and select
the stg.Customer table.

6. Next you will sort the data from sources on the business key. First, drag two Sort
transformations from the SSIS Toolbox onto the data flow design surface. Then con-
nect the output arrow for the stgPerson source adapter to the first Sort transforma-
tion and the output arrow for stgCustomer to the second Sort transformation.

7. Edit the first Sort transformation and select the check box on the left side of the
BusinessEntitylD column in the Available Input Columns area. Click OK to save the
transformation.

8. Edit the second Sort transformation and select the check box on the left side of
the PersonID column in the Available Input Columns area. Click OK to save the
transformation.

9. From the SSIS Toolbox, drag a Merge Join transformation to the design surface, and
then connect the output arrow from the first Sort transformation (stgCustomer) to the
Merge Join transformation. When prompted with the Input Output Selection dialog
box, choose Merge Join Left Input from the Input drop-down list, and then click OK.

10. Also connect the output arrow of the second Sort transformation to the Merge Join
transformation. When prompted, choose Merge Join Right Input from the Input drop-
down list, and then click OK.

210 Designing and Implementing Data Flow

11.

12.

13.

14.

15.

16.

17.

18.

Double-click the Merge Join transformation to display the Merge Join Transformation
Editor. Leave the Join Type setting to Inner Join, which will retrieve only matching rows
from both sources. Return all the columns from the StgPerson source (the first sort
input) by selecting the check box immediately to the left of the Name column header
in the left Sort list.

In the list of columns on the right, select only the check box next to the TerritorylD
column. Click OK to save the changes to the Merge Join transformation.

Drag another OLE DB source adapter from the SSIS Toolbox to the design surface.
Rename it Sales Territory. In the OLE DB Source Editor, set the OLE DB connection
manager to AdventureWorks2012 and select the Sales.SalesTerritory table.

The next goal is to join the existing data output from the Merge Join to the Sales Terri-
tory source. To be able to use the Merge Join transformation, both sources have to be
sorted by the join column. Because the join column is TerritorylD, you will have to also
re-sort the existing data coming from the existing Merge Join transformation.

Drag two Sort transformations from the SSIS Toolbox onto the data flow design
surface, and then connect the output arrow for the Merge Join transformation to the
first Sort transformation and the output arrow from the Sales Territory source to the
second Sort transformation.

Edit the first Sort transformation (the data coming from the Merge Join transforma-
tion) and sort it by the TerritorylD column. Edit the second Sort transformation and
sort it also by the TerritorylD column.

Drag a Merge Join transformation from the SSIS Toolbox onto the data flow design
surface, and then connect the output arrow from the first Sort transformation (the data
from the Merge Join transformation of StgPerson and stgCustomer) to the Merge Join
transformation you just added. When prompted with the Input Output Selection dialog
box, choose Merge Join Left Input from the Input drop-down list, and then click OK.

Also connect the output arrow of the second Sort transformation to the Merge Join
transformation. When prompted, choose Merge Join Right Input from the Input drop-
down list, and then click OK.

Double-click the new Merge Join transformation to display the Merge Join Transforma-
tion Editor. Change the Join Type drop-down list setting to Left Outer Join, which will
retrieve all the rows from the originating Merge Join transformation of the StgPerson
and stgCustomer sources (the left source of the Merge Join transformation) and any
matching rows from the right side (which is from the Sales Territory source). Now select
all the columns from the left list and the Name, CountryRegionCode, and Group col-
umns from the right list. Rename the Name column as TerritoryName and the Group
column as TerritoryGroup by writing the new names in the Output Alias column in
the output list. Click OK to save the changes.

Lesson 2: Working with Data Flow Transformations

211

EXERCISE 2 Load the dbo.Customers Dimension Table into the Data Warehouse

In this exercise, you continue preparing the data for the dbo.Customers dimension as begun in
the previous exercise and then load the data into the data warehouse.

1.

212

You will retrieve additional information about the customer from the stg.Customer-
Information table. To achieve this, you could use the Merge Join transformation again,
but to test an alternative, this time you will use a Lookup task.

Drag a Lookup transformation from the SSIS Toolbox onto the data flow design sur-
face. Rename the Lookup task Get Customer Information. Connect the output arrow
of the Merge Join transformation to the Lookup transformation.

Double-click the Lookup transformation to display the Lookup Transformation Edi-
tor. Select Full Cache mode and OLE DB Connection Manager. In the Specify How To
Handle Rows With No Matching Entries drop-down list, select Redirect Rows To No
Match Output.

In the Lookup Transformation Editor, click the Connection tab and select TK463DW for
the OLE DB connection manager. In the Use A Table Or View drop-down list, select the
stg.Customerinformation table.

In the Lookup Transformation Editor, click Columns tab. Link the BusinessEntitylD
column from the Available Input Column list to the Person/D column in the Avail-
able Lookup Columns list by dragging the BusinessEntitylD column over the Person/D
column. (Note that if you want to later change the mapping, you can right-click the
link between the columns and choose Edit Mappings.) From the Available Lookup
Columns list, select the check boxes for the EnglishEducation, EnglishOccupation,
BirthDate, Gender, MaritalStatus, and EmailAddress columns. Click OK to save the
changes.

Drag a Derived Column transformation from the SSIS Toolbox onto the data flow area.
Rename it Set Default Values. Connect the output arrow of the Get Customer Infor-
mation Lookup transformation to the Derived Column transformation.

Double-click the Derived Column transformation and, in the Derived Column Transfor-
mation Editor, add six new columns, as shown in Table 5-7, by specifying the column
name in the Derived Column Name column and the appropriate SSIS expression in the
Expression column.

Designing and Implementing Data Flow

10.

11.

12.

13.

TABLE 5-7 Derived Column Information

Derived column name SSIS expression
EnglishEducation “N/A"
EnglishOccupation “N/A"

BirthDate NULL(DT_DBDATE)
Gender “N/A"
MaritalStatus “N/A"
EmailAddress “N/A"

Click OK to save the changes.

Drag a Union All transformation from the SSIS Toolbox to the data flow area. Connect
the output arrow from the Get Customer Information Lookup transformation to the
Union All transformation. Also connect the output arrow from the Derived Column
transformation to the Union All transformation.

Double-click the Union All transformation and, in the Union All Transformation Editor,
select the appropriate columns in the Union All Input 2 column. Create all mapping be-
tween columns from both sources. Map rows that have an <ignore> value by clicking
them and selecting the appropriate value from the drop-down list.

Before inserting the data into the dbo.Customers table, you have to check whether the
record already exists. Drag a Lookup transformation from the SSIS Toolbox to the data
flow area. Rename it Check Customer Exists. Drag the output arrow from the Union
All transformation to the new Lookup component.

Double-click the Lookup component and, in the Lookup Transformation Editor, specify
to ignore failure in the Specify How To Handle Rows With No Matching Entries drop-
down list. On the Connection tab, select TK463DW as an OLE DB connection manager,
choose Use Results Of An SQL Query, and type the following query.

SELECT CustomerDwKey, CustomerKey FROM Customers;

On the Columns tab of the Lookup Transformation Editor, link the BusinessEntitylD and
CustomerKey columns. Choose to retrieve the CustomerDwKey column from the Avail-
able Lookup Columns list. Click OK to save the changes.

Lesson 2: Working with Data Flow Transformations 213

214

14.

15.

16.

17.

18.

19.

20.

21

Drag a Derived Column transformation from the SSIS Toolbox and connect the output
arrow from the Check Customer Exists Lookup transformation to the new Derived Col-
umn transformation. Rename the Derived Column transformation Calc Columns.

Edit the Derived Column transformation by adding a new derived column called
FullName and typing the following SSIS Expression.

LastName + + FirstName

Click OK to save the changes.

Now you need to check whether the record exists in the target table. Drag a Condi-
tional Split transformation onto the data flow design surface, and then connect the
output arrow from the Derived Column transformation to the Conditional Split
transformation.

Double-click the Conditional Split transformation to display the Conditional Split Trans-
formation Editor dialog box. Create a new output by typing New record in the Output
Name box for the first row of the output list. In the same row of the output list, type
the following code in the Condition field.

ISNULL (CustomerDwKey)

Click OK to save your changes.

From the SSIS Toolbox, drag an OLE DB destination adapter to the data flow design
surface, and then change its name to Dim Customer. Drag an output arrow from the
Conditional Split transformation onto this new OLE DB destination adapter. When
prompted in the Input Output Selection dialog box, select New Records from the Out-
put drop-down list, and then click OK.

Double-click the Dim Customer destination adapter that you just created to display
the OLE DB Destination Editor dialog box. Set TK463DW in the OLE DB connection
manager drop-down list, set Table Or view—Fast Load for the Data Access Mode, and
select the dbo.Customer table. Choose the Mappings tab, and set the mappings as
displayed in Table 5-8.

TABLE 5-8 Column Mapping for the OLE DB Destination Adapter

Input column Destination column
<ignore> CustomerDwKey
BusinessEntitylD CustomerKey
FullName FullName
EmailAddress EmailAddress
BirthDate BirthDate

Designing and Implementing Data Flow

Input column Destination column
MaritalStatus MaritalStatus
Gender Gender
EnglishEducation EnglishEducation
EnglishOccupation EnglishOccupation
<ignore> City
TerritoryName StateProvince
CountryRegionCode CountryRegion
<ignore> Age

<ignore> CurrentFlag

22. Click OK to save the changes.

23. Execute the DimCustomer.dtsx package. Observe the execution to confirm successful
completion of this exercise.

NOTE CONTINUING WITH PRACTICES

Do not exit SSDT if you intend to continue immediately with the next practice.

Lesson Summary
m Remember which transformations are non-blocking, partly-blocking, and blocking.
m Use the Resolve References dialog box to solve mapping errors.

m Use Derived Column transformation to add new columns or replace the value in
existing ones.

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1. Which transformation can you use if you would like to convert data from one data
type to another? (Choose all that apply.)

A. Audit
B. Derived Column
C. Data Conversion

D. Script Component

Lesson 2: Working with Data Flow Transformations

215

216

2. Which transformations are fully blocking? (Choose all that apply.)
A. Lookup transformation
B. Sort transformation
C. Merge Join transformation
D. Aggregate transformation
3. Which transformations are new in SQL Server 2012 SSIS? (Choose all that apply.)
A. CDC Splitter
B. Pivot
C. Fuzzy Lookup
D. DQS Cleansing

Lesson 3: Determining Appropriate ETL Strategy
and Tools

The volume of data that must be managed by data warehouses is growing every day, and
data integration is becoming the biggest issue, with increasing demand for the implementa-
tion of different analytical solutions ranging from enterprise data warehouses to specific data
marts needed for predictive analytics. Most of the cost and maintenance of complex data in-
tegration processing occurs in the bulk data movement space. ETL has experienced explosive
growth in both frequency and size in the past 15 years. In the mid-1990s, pushing 30 giga-
bytes (GB) to 40 GB of data on a monthly basis was considered a large effort. However, some
companies have requirements for moving a terabyte of data on a daily basis. In addition to
standard flat file and relational data formats, data integration environments need to consider
XML and unstructured data formats. With these new formats, along with the exponential
growth of transactional data, the data integration process is just getting more complex and
demanding.

This lesson looks at some of the ETL strategies and how you can get optimal performance
from SSIS by taking advantage of the database layer by using SQL.

After this lesson, you will be able to:
m Define an ETL strategy.

m Use an appropriate mixture of SSIS transformations and SQL code.

Estimated lesson time: 80 minutes

Designing and Implementing Data Flow

ETL Strategy

ETL strategy is a very broad term. It is sometimes seen only as part of a data warehouse
project; others include it as a subdiscipline of an enterprise integration framework. ETL
strategy can cover the whole methodology from the analysis phase of a project, when you
are mapping logical models to source systems; or it can encompass a more technical view of
the engineering process, minimizing the potential risks of data integration. Because there are
entire books written on just this subject, this book focuses on three technical areas:

m Defining the architecture for ETL
m Deciding what to do in the SSIS and what to push down to the database layer
®m Managing the whole ETL process

The first and second areas will be explained with examples in this chapter. The last area
involves efficient tracking and parameterization of the ETL process, which will be explained in
later chapters.

ETL Architecture

Data integration reference architecture defines the processes and environments that support
the capture, quality checking, processing, and movement of data, whether it is transactional
or bulk, to one or many targets. A typical architecture layer for ETL consists of a process and
a landing zone, which is usually inside the database. Each process follows a landing zone. A
standard architecture would be:

m Extract the data (process)

® [nitial Staging (landing zone)

m Data Quality (process)

m Clean Staging (landing zone)

m Transformation (process)

m Load-ready Publish (landing zone)

m load Enterprise Data Warehouse (process)
m Enterprise Data Warehouse (landing zone)
m Load Data Marts (process)

m Data Marts (landing zone)

When you design your architecture, you must decide which landing zones you will materi-
alize in terms of writing the data to the specific tables inside a schema or a database. Usually
the Initial Staging is very beneficial after the Extract phase, which can be a 1:1 copy, a change
data capture, or an incremental copy. If you are using multiple data sources, this is the first
area where you unify everything in one database and can use common SQL language over
all the extracted data. The next phase depends on the quality of the data. If it is bad, even

Lesson 3: Determining Appropriate ETL Strategy and Tools

217

218

-

more interaction with the business users and data stewards would be required, in which case
this landing zone would be very beneficial. Transforming the data and loading it into a data
warehouse is usually done inside the SSIS without explicitly staging the transformed data.
Depending on the model of the data warehouse and its size, the ETL job for data marts can
also become very complex (for example, consider a large industry model with more than 200
entities in third normal form (3NF) that now must be changed to a star schema model).

Based on this architecture, the ETL solution using SSIS should have multiple packages
dedicated to each process. It is better to have multiple packages than to have too many data
flows in one package. Another important thing to remember is team development, which can
be managed if you create multiple packages. In SQL Server 2012, with the addition of data
quality tools and a separated master data management service, the ETL architecture is get-
ting more attention, and thanks to this multi-process/multilayer architecture, you can fit new
possibilities into your ETL strategy.

Lookup Transformations

When inserting data into a data warehouse fact table, you need to get an appropriate data
warehouse key (usually a surrogate key) from the dimension table. As you may remember
from Chapter 2 that columns in a fact table include foreign keys and measures, and dimen-
sions in your database define the foreign keys. The Lookup transformation is very useful in
an ETL process for solving this problem, because it performs lookups by joining data in input
columns with columns in a reference dataset.

Using a Lookup Transformation

You add a Lookup transformation by dragging the component from the SSIS Toolbox to the
data flow design area. Using the Lookup Transformation Editor, you specify the reference
dataset. This can be a cache file, an existing table or view, a new table, or the result of a SQL
query. The Lookup transformation uses either an OLE DB connection manager or a Cache
connection manager to connect to the reference dataset. In Figure 5-14, you can observe the
configurations on the General tab.

You specify how the reference dataset will be stored in memory by selecting the appropri-
ate cache mode:

m Full cache is the default mode. In this mode, the database is queried once during the
pre-execute phase of the data flow, and the entire reference set is stored into memory.
Lookup operations will be very fast during their execution, but you need to have
enough memory to fit the needed dataset.

Designing and Implementing Data Flow

m Partial cache means that the lookup cache is empty at the beginning of the data
"/) flow. When a new row comes in, the Lookup transformation checks its cache for the
matching values. If no match is found, it queries the database. If the match is found
at the database, the values are cached so they can be used the next time a matching
row comes in. In SQL Server 2008 and SQL Server 2012, it is also possible to set up the
Miss Cache feature, which allows you to allocate a certain percentage of your cache to
remembering rows that had no match in the database.

d), m The no cache mode will store only the last matched row, which means that the Lookup
transformation will query the database for each row. This mode should be avoided in
data warehouse scenarios when you are loading a fact table, because it will work too
slowly.

& Lookup Transformation Editor gl =l

This transform enables the performance of simple equi-joins between the input and a reference data set,

M —Cache mode

Connection
Calumns & Full cache
Ad d
vance " Partial cache
Errar Cukput

" Mo cache

— Connection bype
(o Cache connection manager

* OLE DB connection manager

Specify how to handle rows with no matching entries

Fail component j

OF I Cancel Help

FIGURE 5-14 The General tab of the Lookup Transformation Editor, in which you can define the kind of
cache mode to use.

4

Lesson 3: Determining Appropriate ETL Strategy and Tools 219

220

EXAM TIP

The most important setting of the Lookup transformation is the cache mode. In data ware-
house environments, try to have enough memory to use the Full Cache option, because it
will perform very fast. Remember also that the Lookup transformation is a non-blocking
transformation; this is also important when you design your ETL strategy. The only draw-
back is that the whole dataset has to be written into memory first, in the pre-execute
phase of the data flow. One thing to note is that the lookup will not swap memory out to
disk, so your data flow will fail if you run out of memory.

On the Connection tab of this dialog box, you specify the referenced dataset. Based on the
fact that Full Cache mode is the optimum choice, it is a best practice to write a SQL query that
will return only the needed columns. For example, if you specify a table in the Use A Table Or
A View option and this dimension table has 50 or more columns, all of them will be stored in
memory. Usually you need just a couple of columns—those that are needed for joining, and
the columns you would like to retrieve.

You specify the composite join (a join over multiple columns) on the Columns tab of the
Lookup Transformation Editor. If you have to write a join with a range predicate—for exam-
ple, between a start and end date—you must use the Custom Query option on the Advanced
tab. In a case like that, you cannot use Full Cache mode, only Partial Cache.

IMPORTANT LOOKUP TRANSFORMATION CASE SENSITIVITY

The lookups performed by the Lookup transformation are case sensitive. Use either the
Character Map transformation to convert the data to uppercase or lowercase and use ap-
propriate SQL functions such as UPPER or LOWER for the referenced dataset.

Another important parameter that can be configured in the Lookup Transformation Edi-
tor is how to handle rows that have no matching entries. You can fail the component, ignore
failure, or redirect rows either to a new “no match” output or to an error output. This can be
specified on the General tab. In Figure 5-15, you can observe two outputs from the Lookup
task, one for matching output and one for nonmatching output. As you can see, they are
merged using the Union All component.

Designing and Implementing Data Flow

FactSalesOrders.dtsx [Design] 3¢

£, Control Flow [[50 Daka Flow | Parameters | & Ewvent Handlers |“: Package Explorer ‘/l _;l
Data Flow Task: |[.;[| Diata Flow Task ;I
-1} 1 Sales
|_E> Orders

| Lookup Mo Match Output
= Get CustomerDwiey
=

Set Default Value for
I CustomerDwkey

Lookup Match Output

1

Union All

Connection Managers
{project) AdventureWorks2012 1 (project) AdventureWorks2012_0ODBC J (project) Cache Connection Manager - (project) CustomerInformation
| (project) Tkag3DW || (project) TK4630W_ODBC

FIGURE 5-15 Using both outputs from the Lookup transformation and then merging them together.

This seems natural in terms of data flow—if a match is not found, some default value is
applied for this row and then both outputs are merged into one to write the data to the
destination adapter. But in terms of performance and best practices, it is better to apply a dif-
ferent approach. Figure 5-16 shows the alternative solution. Inside the Lookup Transformation
Editor, the data flow was set up to ignore failure by setting the Specify How To Handle Rows
With No Matching Entries to that choice. This means that the result will get matched values
from the Lookup transformation and also rows with a NULL inside the lookup result columns.
Then a Derived Column component is added and an SSIS Expression is written to replace an
existing lookup result column by the following logical expression.

ISNULL (CustomerDwKey) ? 0 : CustomerDwKey

Lesson 3: Determining Appropriate ETL Strategy and Tools

221

222

Factsdesorders e oesort” < [

£, Control Flow [[50 Daka Flow | Parameters | & Ewvent Handlers |“: Package Explorer ‘/l _;l
Data Flow Task: |1__;?J Insert Fact SalesOrders ;I
-1} 1 Sales
|_E> Orders
| Get CustomerDwie
] o ey
)‘

Lookup Match Output

Set Default Value for
I CustomerDwkey

Connection Managers

3 {project) AdventureWorks2012 J (project) AdventureWorks2012_0ODBC J (project) Cache Connection Manager = (project) CustomerInformation
| (project) Tkag3DW | (project) TK463DW_ODBC

FIGURE 5-16 An alternative approach to the data flow shown in Figure 5-15, using the Ignore Failure
option in the Lookup component.

The second approach is much faster and uses fewer resources. This is because the Union
All transformation is partially blocked. As you will learn in Chapter 13, the buffers that store
the data need to be copied, and this takes time and server resources.

¥ Quick Check

m What is the difference between the Lookup and Merge Join transformations?

Quick Check Answer

m The Lookup transformation does not need a sorted input; it is a non-blocking
transformation, and in cases when more matching rows exist from the referenced
dataset, only the first one will be retrieved. This means that the transformation will
never retrieve more rows than exist in the input rows. With the Merge Join trans-
formation more rows can be retrieved, because all matching data is retrieved.

Designing and Implementing Data Flow

Using the Cache Transform Transformation with the Lookup
Transformation

The Cache Transform transformation writes data from a connected data source in the data
flow to a Cache connection manager. The Cache connection manager provides an alternative
to doing lookups against a database table with an OLE DB connection.

After a cache is created in an SSIS package, it will be kept in memory until the package
has finished executing, if the Cache connection manager is set on the package level. If the
Cache connection manager is set on a project level, it can be shared by other packages. With
this approach, the cache can be reused across multiple packages and data flows, and shared
between multiple lookups. It can also be persisted to disk.

Figure 5-17 shows that the cache must first be created in a separate data flow by using the
Cache Transform so that it can be referenced in other data flow tasks.

Faasesondes o (] [

#,. Control Flow |[55 Daka Flow |‘/ Parameters | & Ewvent Handlers |“: Package Explorer ‘/l _;l

Load Cache for Customer
u=d Dimension

| = | Insert Fact SalesOrders

4 | i

Connection Managers

3 {project) AdventureWorks2012 J (project) AdventureWorks2012_ODBC - (project) CustomerInformation J (project) TK463DW
4 (project) TK463DW_QDBC 3 Cache Connection Manager

FIGURE 5-17 Using the Cache Transform in the control flow.

Lesson 3: Determining Appropriate ETL Strategy and Tools

223

224

The following lists the benefits of using the Cache connection manager:
m [t allows you to reuse the cache to reduce database load.

m It allows you to share the cache between lookups to reduce memory usage. For
example, consider a role-playing dimension in data warehousing, where there is one
physical table, but in the fact table there are multiple foreign key relationships for each
of its roles (for the Date dimension, there could be InvoiceDatelD, ShippingDatelD,
DocumentDatelD, and so on).

m You can do lookups against other (non OLE-DB) sources.

In terms of cache modes and the best practices that surround them, using a Cache con-
nection manager is equivalent to using Full Cache mode. Because the cache is essentially clear
text, it is not recommended that sensitive data be stored in the cache.

EXAM TIP

A cache is created in a standard data flow, which means that you can use any data source
that SSIS can connect to as a source for the Lookup transformation. With the Cache con-
nection manager, you are no longer bound to an OLE DB connection to create a lookup
dataset.

Sorting the Data

As you learned in the previous lesson, the Sort transformation is an expensive component in
terms of memory and processor consumption, and it is also a full blocking transformation. On
the other hand, the Merge Join transformation needs sorted input; so the question is, what is
the best way to develop the package?

If you are reading the data from a database—either from the staging area or directly from
a transactional system—you can put the burden of sorting the data on the underlying data-
base. You achieve this by specifying a custom SQL query with an ORDER BY clause in the Data
Source component.

Then you have to inform the data flow engine that the data source is sorted. In the Ad-
vanced Editor dialog box for the created data source component, expand the output columns
on the Input And Output Properties tab, as show in Figure 5-18.

Now set the SortKeyPosition property for the columns that are part of the sorting key (1
for the first column, 2 for the second, and so on); the value 0 is the default value for all col-
umns that are not part of the sort key. You must also specify that the whole output is sorted
by selecting the output (this is the OLE DB Source Output node in Figure 5-18) and setting the
IsSorted property to True.

Designing and Implementing Data Flow

NOTE USING THE STAGING AREA TO PUSH THE SORT OPERATION TO THE DATABASE

If you are using a staging area for your data warehouse, you can always push the sort op-

eration to the underlying database and also create appropriate indexes. In cases when you

want to merge multiple flat files without first staging them, then you have to use the Sort

transformation.

Inputs and outputs:

l Advanced Editor for stgPersonCustomer

The advanced editor provides access to the low-level properties of data flow components, Additionally, the advanced editar can
be used to configure components that do not have a custom user interface,

Conneckion Managers | Component Properties | Column Mappings Input and Qutput Properties

Specify properties For the inputs and outputs of the data flow component.

[=-Z OLE DE Source Qutput
,__] External Columns
E| [Qutput Columns

: = BusinessEntityID

= MiddleName
_§',> LastMarne

[-[5 OLE DB Source Error Output

Add Output | Add Column

E Common Properties

ComparisonFlags

Description

ErrorCrTruncationCperatic) Conwversion
ErrorRowDisposition RD_FailComponent
ExternalMetadataColumnll 656

(] 657
IdentificationString stgPersoniCustomer, Dukputs[OLE
LineagelD BE57
MappedColumnID o

Marne TerritoryID
SortkeyPosition 1

SpecialFlags o

TruncationRowDisposition | RD_FailComponent
Data Type Properties

CodePage o
DataType fFour-byte signed integer [DT_I4]
Length o
Precision o
Sicale]

Remoyve Gutpuk | Remave Column

=0l x|

Refresh |

OF I Cancel Help

FIGURE 5-18 Specifying that the output data is sorted in the Advanced Editor.

Set-Based Updates

In a data warehouse environment, it is usually best to avoid using UPDATE and DELETE opera-
tions on the data and in the ETL strategy. This recommendation is focused mostly on large

fact tables, for which you will learn an efficient way to incrementally update data in Chapter 7.
Of course, you still have to do some updating of the data when it comes to dimension tables.

Lesson 3: Determining Appropriate ETL Strategy and Tools

225

226

Currently the only way to perform an update in SSIS is to use an OLE DB Command transfor-
mation that executes a SQL statement by using columns from the current row as parameters.
This operation is done for each row inside the data flow and, because of this, it is useful only in
specific cases when the total number of executed SQL statements will be small. For example,
consider an update of the dbo.Customer dimension table, which has more than 100,000 rows.
Suppose that a Lookup transformation returns 30,000 matched rows that need to be updated.
If you map the output to the OLE DB Command to update these rows, it will execute the SQL
statement 30,000 times. As you can see, this will be very slow and something that you should
avoid.

So the question is, how can you perform a batch update in SSIS? The native SSIS function-
ality currently prevents you from performing a batch update from a data flow task without
first staging the needed modified data. Figure 5-19 shows the combination of first using a
data flow task and then using an Execute SQL task inside the control flow. The data flow task
writes the needed modified data to an additional staging table, and then the Execute SQL
task will use either the UPDATE or the MERGE T-SQL statement to perform a set-based up-
date. (If you are not familiar with the T-SQL MERGE statement, see Chapter 2.

= | Dim Customer

Update Customers

FIGURE 5-19 Combining the data flow task and the Execute SQL task.

This demonstrates the importance of understanding what you can do better on the data-
base layer and what is best done in SSIS. With this approach, the update of 30,000 rows will
take seconds, compared to an hour using an OLE DB Command transformation.

NOTE UPDATING DIMENSIONS USING THE T-SQL MERGE STATEMENT

Using the T-SQL MERGE statement, you can perform an “upsert” operation, which refers to
any database statement or combination of statements that inserts a record to a table in a
database if the record does not exist or, if the record already does exist, updates the exist-
ing record. If you want to perform such an operation directly in the data flow, then you can
develop a custom transformation or use one from a third-party provider of custom data
flow transformations.

Designing and Implementing Data Flow

Remember that even though the data flow engine is very fast, it is important to realize
what can be done inside SSIS and what can be pushed to the database layer, so that you can
find an optimum solution and design an effective ETL process.

REAL WORLD EFFICIENTLY LOADING DATA

It makes sense to evaluate where operations take place in your data flow even when load-
ing the data, and even if the data set is not large. For example, one client had about 10
million rows, but their T-SQL code for loading the data had about 40 UPDATE statements,
joining different tables to get the information they needed. That process took about six
hours. We changed the loading from the pure T-SQL procedures to SSIS and applied all
rules in one data flow. The final result took only 10 minutes for loading the fact table data.

Enhancing Data Flow Transformations

In this practice, you will apply some of the methods discussed in this topic. You will modify
the ETL process created in the Lesson 2 exercise to see how things can sometimes be done
more effectively.

If you encounter a problem completing an exercise, you can install the completed projects
from the Solution folder that is provided with the companion content for this chapter and
lesson.

EXERCISE 1 Join and Sort Tables in the Staging Area

In this exercise, you replace the Merge Join and Sort transformations by pushing the needed
operation down to the database layer.

1. If necessary, start SSDT, open the TK 463 Chapter 5 project, right-click the DimCustomer
package, and choose Copy. Right-click the SSIS Package folder in the Solution Explorer
window, and select Paste. Rename the copied package DimCustomerNew.dtsx.

2. Click the Data Flow tab at the top of the SSIS Designer. Select the stgCustomer,
stgPerson, Sort, Sort 1, Merge Join, and Sort 3 components, and press Delete on
the keyboard. You will now replace the existing logic of sorting and merging data
by doing this on the database layer.

3. Inthe SSIS Toolbox , drag an OLE DB Source adapter onto the data flow workspace.
Rename the OLE DB Source adapter StgPersonCustomer. Edit the source adapter and
set an OLE DB connection manager to TK463DW, set the Data Access Mode to SQL
Command, and type the following SQL statement.

SELECT
P.BusinessEntityID,
P.PersonType,

P.Title,
P.FirstName,

Lesson 3: Determining Appropriate ETL Strategy and Tools 227

228

P.Midd1eName,

P.LastName,

P.Suffix,

C.TerritoryID
FROM stg.Person AS P
INNER JOIN stg.Customer AS C ON C.CustomerID = P.BusinessEntityID
ORDER BY C.TerritoryID;

Click OK to save changes.

Right-click the stgPersonCustomer object and select Show Advanced Editor. On the In-
put And Output Properties tab, click OLE DB Source Output in the Inputs And Outputs
area. Under Common Properties, set the IsSorted property to True. This property pro-

vides a hint to the SSIS that the data coming from the OLE DB Source adapter is sorted.

Now you have to define the sorting columns by expanding the OLE DB Source Output
in the Inputs And Outputs area. Expand the Output Columns and click TerritoryID. In
Common Properties, set the SortKeyPosition property to 1, and click OK to close the
Advanced Editor. This will indicate that TerritorylD is the first column for sorting and
that it is sorted in ascending order. (For descending order, use -1.)

Connect the output arrow of the stgPersonCustomer object to the Merge Join 1 trans-
formation. Open the Merge Join Transformation Editor for the Merge Join 1 transfor-
mation to observe the mappings between the left and right inputs. Click OK.

Execute the DimCustomerNew.dtsx package. Observe the execution to confirm suc-
cessful completion of this exercise.

EXERCISE 2 Create Efficient Lookups

In this exercise, you replace the Union All transformation by not having multiple outputs from
the Lookup transformation. This is usually very useful in data warehousing when you are load-
ing fact tables and you need to perform multiple lookups to get the appropriate dimension

surrogate key.

1.

If necessary, start SSDT, open the TK 463 Chapter 5 project, and then open the Dim-
CustomerNew.dtsx package from the previous exercise for editing.

On the Data Flow tab, open the Lookup Transformation Editor for the Get Customer
Information Lookup task.

In the Specify How To Handle Rows With No Matching Entries drop-down list, select
Ignore Failure. Click OK to save the changes.

Delete the Union All transformation and the Set Default Values Derived Column trans-
formation.

Drag a Derived Column transformation from the SSIS Toolbox onto the data flow de-
sign area and rename it Set default values.

Designing and Implementing Data Flow

6.

10.

Connect the output arrow of the Get Customer Information Lookup component to the
new Derived Column transformation.

Edit the Set Default Values Derived Column transformation. In the Derived Column
Transformation Editor, replace six of the existing columns as shown in Table 5-9 by
specifying them in the Derived Column column. Add the appropriate SSIS expression
in the Expression column.

TABLE 5-9 Derived Column Information

Derived column SSIS expression

Replace ‘EnglishEducation’ ISNULL(EnglishEducation) ? “N/A” : EnglishEducation
Replace ‘EnglishOccupation’ ISNULL(EnglishOccupation) ? “N/A” : EnglishOccupation
Replace ‘BirthDate’ ISNULL(BirthDate) ? NULL(DT_DBDATE) : BirthDate
Replace ‘Gender’ ISNULL(Gender) ? “N/A” : Gender

Replace ‘MaritalStatus’ ISNULL(MaritalStatus) ? “N/A” : MaritalStatus

Replace ‘EmailAddress’ ISNULL(EmailAddress) ? “N/A” : EmailAddress

Click OK to save the changes.

Connect the output arrow of the Set Default Values Derived Column component to the
Check Customer Exists Lookup transformation.

Execute the DimCustomerNew.dtsx package. Observe the execution to confirm suc-
cessful completion of this exercise.

EXERCISE 3 Update the Customer Dimension Table

In the Exercise 1 of Lesson 2, you only inserted new rows in the Customer table. You did

not develop any mechanism for updating existing columns for the existing row. Usually you
need to update the columns for which you do not want to keep a history of changes (Slowly
Changing Dimension Type 1). For simplicity, in this exercise, you will update all the rows, not
only those that have changed. You will implement this by having a set-based update instead
of using the existing OLE DB Command transformation, because the latter is too slow in such

a scenario.

1.

Start SSMS and connect to your SQL Server instance. Open a new query window by
clicking the New Query button. Select the TK463DW database in the database drop-
down list. Use the following code to create the dbo.UpdateCustomers staging table
based on a structure similar to that of the dbo.Customers dimension table (for example,
you do not need computed columns and the surrogate key).

Lesson 3: Determining Appropriate ETL Strategy and Tools

229

CREATE TABLE dbo.UpdateCustomers

(

CustomerKey INT NOT NULL,
Ful1Name NVARCHAR(150) NULL,
EmaiTAddress NVARCHAR(50) NULL,
BirthDate DATE NULL,
MaritalStatus NCHAR(5) NULL,
Gender NCHAR(5) NULL,
Education NVARCHAR(40) NULL,
Occupation NVARCHAR(100) NULL,
City NVARCHAR(30) NULL,
StateProvince NVARCHAR(50) NULL,
CountryRegion NVARCHAR(50) NULL

)

2. If necessary, start SSDT, open the TK 463 Chapter 5 project, and then open the
DimCustomerNew.dtsx package from the previous exercise for editing.

3. Click the Data Flow tab and drag an OLE DB Destination adapter from the SSIS Toolbox
onto the data flow design area, under the existing Conditional Split transformation.
Rename the component Update Dim Customer.

4. Connect the output arrow from the Conditional Split transformation to the new OLE
DB Destination component.

5. Open the OLE DB Destination Editor for the Update Dim Customer component. Set
an OLE DB connection manager to TK463DW, set the Data Access Mode to Table Or
View—rFast Load, and select the dbo.UpdateCustomers table. On the Mappings tab,
ensure that the columns are linked as shown in Table 5-10.

TABLE 5-10 Column Mapping for the OLE DB Destination Adapter

Input column Destination column

BusinessEntitylD
FullName
EmailAddress
BirthDate
MaritalStatus
Gender
EnglishEducation
EnglishOccupation
<ignore>
TerritoryName

CountryRegionCode

CustomerKey
FullName
EmailAddress
BirthDate
MaritalStatus
Gender
EnglishEducation
EnglishOccupation
City

StateProvince

CountryRegion

Designing and Implementing Data Flow

6.

10.

Click OK to save the changes.

Now you will add a T-SQL UPDATE statement in the control flow area to update the
dbo.Customers table. Click the Control Flow tab and drag the Execute SQL task onto
the workspace. Rename it Update Customers.

Open the Execute SQL Task Editor and, under the Connection property, choose
TK463DW. For the SQLStatement property, type the following SQL statement to
update dbo.Customers.

UPDATE C
SET
Ful1Name = U.FullName,
EmailAddress = U.EmailAddress,
BirthDate = U.BirthDate,
MaritalStatus = U.MaritalStatus,
Gender = U.Gender,
Education = U.Education,
Occupation = U.Occupation,
City = U.City,
StateProvince = U.StateProvince,
CountryRegion = U.CountryRegion
FROM dbo.Customers AS C
INNER JOIN dbo.UpdateCustomers AS U ON U.CustomerKey = C.CustomerKey;
-- truncate table
TRUNCATE TABLE dbo.UpdateCustomers;

Click OK to close the Execute SQL task. Connect the data flow task with the Execute
SQL task.

Execute the DimCustomerNew.dtsx package. Observe the execution to confirm suc-
cessful completion of this exercise.

Lesson Summary

Use sorting on the database layer as much as possible.
When joining large tables, consider doing so on the database layer.

Insert the data that needs to be updated into a temporary table and then perform a
set-based update using SQL.

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

Lesson 3: Determining Appropriate ETL Strategy and Tools 231

232

1. Which data flow transformation would you use if had to combine data from two differ-
ent database tables that exist on two different servers? (Choose all that apply.)

A. Merge Join transformation
B. Union All transformation
C. Merge transformation

D. Lookup transformation

2. Suppose that you want to load the data from a flat file and write it into a SQL Server,
Excel, and Raw File transformation inside one data flow task. How many Data Source
adapters do you need? (Choose all that apply.)

A. 0
B.

C. 2
D. 3

3. Which sentence is true regarding Cache connection manager? (Choose all that apply.)
A. Cache can be reused by multiple Lookup transformations.
B. You cannot incrementally update the cache while the package is running.
C. The Cache connection manager can be set on a project level.

D. You can do lookups against other (non OLE-DB) sources.

Case Scenario

In the following case scenario, you apply what you've learned about designing and imple-
menting a data flow. You can find the answers to these questions in the "Answers” section at
the end of this chapter.

Case Scenario: New Source System

The marketing department has requested that you add the market share by product informa-
tion into the data warehouse. They have purchased a yearly subscription for this information
feed, and the data is available monthly on an FTP server. The data is in a flat file. It contains
information about the product group in the first field, and the market share information is in
12 fields (a separate field for each month).

You need to integrate this new source to an existing DW. Answer the following questions:
1. How would you model the fact table to store market share results?

2. Which tasks and transformations in SSIS would you use to populate this fact table?

Designing and Implementing Data Flow

Suggested Practices

To help you successfully master the exam objectives presented in this chapter, complete the
following tasks.

Create and Load Additional Tables

In order to experience the range of possibility of data flow transformations, prepare different
packages for loading the data in the dimension and fact tables created in Chapter 1, “Data
Warehouse Logical Design.”
m Practice 1l Create a package for loading the dbo.Products table. Use the same source
that you used in the SQL statements for populating the dbo.Products table in Chapter 2.
First, stage all the needed tables.
m Practice 2 Create a new package for loading the dbo.InternetSales fact table. Use the
same logic for source tables that you used in the SQL statement used for populating
the dbo.InternetSales table in Chapter 2.

Suggested Practices

233

234

Answers

This section contains answers to the lesson review questions and solutions to the case sce-
narios in this chapter.

Lesson 1

1. Correct Answers: A, Cand D

A.
B.
C.
D.

Correct: ADO NET supports SQL Server.

Incorrect: The Raw File source is used to read SSIS raw files.
Correct: OLE DB supports SQL Server.

Correct: With ODBC, you can connect to SQL Server.

2. Correct Answers: B and C

A.
B.
C.
D.

Incorrect: The OLE DB destination is not used for flat files.
Correct: This is the main destination adapter for flat files.
Correct: The SSIS Raw File destination is used for staging data to the file system.

Incorrect: The Recordset destination is used to store the data in memory.

3. Correct Answers: A and D

A. Correct: You can change how source data is mapped to SSIS data types in the
Advanced Editor.

B. Incorrect: You can have multiple data source adapters within one data flow task.

C. Incorrect: You can select specific columns to be extracted using the source
adapter.

D. Correct: You can use the XML source adapter to read the data from an XML file.

Lesson 2
1. Correct Answers: B, C,and D

A. Incorrect: This adds additional columns to each row based on system package
variables.

B. Correct: Using the SSIS Expression language, you can use functions that enable
you to convert data from one data type to another.

C. Correct: This is the main purpose of the Data Conversion transformation.

D. Correct: Using the Script component, you can use VB.NET or C# and convert the

data from one data type to another.

Designing and Implementing Data Flow

2. Correct Answers: Band D

A. Incorrect: A Lookup transformation is a non-blocking transformation.

B. Correct: A Sort transformation has to wait for all the input rows before passing the
rows onward.

C. Incorrect: A Merge Join transformation is partly blocking.

D. Correct: An Aggregate transformation is fully blocking, because all rows have to
be read before an aggregation can be applied and rows passed onward.

3. Correct Answers: Band D

A. Correct: CDC Splitter is a new transformation.

B. Incorrect: The Pivot transformation was available in previous versions.

C. Incorrect: The Fuzzy Lookup transformation was available in previous versions.

D. Correct: DQS Cleansing is a new transformation.

Lesson 3
1. Correct Answer: A and D

A. Correct: Using the Merge Join transformation, you can join two sources by apply-
ing an inner join, left outer join, or a full outer join.

B. Incorrect: The Union All transformation does not join two data sources.

C. Incorrect: The Merge transformation is similar to Union All and does not join two
data sources.

D. Correct: The Lookup transformation can associate data from two sources.

2. Correct Answers: B, Cand D

A. Incorrect: You need to have at least one data source adapter to read the flat file.

B. Correct: One data source adapter is enough, because you can use the Multicast
transformation to write data to three data destination adapters.

C. Correct: You can map two data source adapters to three data destination adapt-
ers by using a Multicast transformation for one data source to write to two data
destination adapters.

D. Correct: You can map three data source adapters to three data destination
adapters.

3. Correct Answers: A, C, and D

A.
B.

Correct: You can use the same cache for multiple Lookup transformations.

Incorrect: In SQL Server 2012 SSIS, it is possible to incrementally update the cache
while the package is running.

Answers

235

C. Correct: You can set the Cache connection manager on the project level.

D. Correct: First you can load the data from various sources in to a Cache connection
manager and then use it for the Lookup transformation.

Case Scenario

1. You would need to have three columns (two dimensions and one measure)—product
group, reporting month, and a market share value. The fact table would be semi-additive
(not additive over time).

2. First, you would use an FTP task to copy the file to the machine on which SSIS is in-
stalled. You can then import the file by using a data flow task configured with a Flat
File source adapter. Then you would need to unpivot the columns for months to get a
row for each month, and use the Lookup task to get appropriate surrogate keys from
existing the dimension, and use the ODBC Destination adapter to write the data to the
new fact table.

236 Designing and Implementing Data Flow

Enhancing SSIS
Packages

CHAPTER 6 Enhancing Control Flow 239

CHAPTER7 Enhancing Data Flow 283

CHAPTER 8 Creating a Robust and Restartable Package 327
CHAPTER9 Implementing Dynamic Packages 353

CHAPTER 10 Auditing and Logging 381

Enhancing Control Flow

Exam objectives in this chapter:
m load Data
m Design control flow.
m Implement package logic by using SSIS variables and parameters.

® Implement control flow.

icrosoft SQL Server Integration Services (SSIS) solutions are automated solutions—

their operation requires no user interaction whatsoever; in fact, in all the activities
surrounding SSIS solutions, the human presence is limited to development (obviously),
deployment (for example, when solutions are initially set up in production or when new ver-
sions of the solutions are set up), and maintenance (for example, to reconfigure a solution,
to analyze its operation, or to troubleshoot it).

This significant characteristic has a profound effect on SSIS development; every process
and every operation—regardless of its complexity—must be planned and implemented
in such a way that its execution can be automated. Not only does this mean the execution
itself, but also error detection. The response to errors must also be automated, and, ideally,
the same applies to recovery from them.

Determinism is what allows automation in the first place. As long as an operation can be
described deterministically (and translated to a programming language), then the operation
can be automated. Most data warehousing operations are automated; they are performed
by machines instead of humans, allowing us humans to spend the predominant part of our
workday doing what we do best—thinking, creating, and responding to challenges that no
machine currently in existence is able to respond to.

Of course, not all data warehousing operations can be automated; not necessarily be-
cause they cannot be described deterministically, but because they cannot be described in
a sufficient degree of determinism in advance. Some operations—troubleshooting activi-
ties, usually—cannot be predicted and therefore cannot be automated until they have been
encountered at least once. From then on, every known set of circumstances identified dur-
ing the "manual” troubleshooting operation can be defined deterministically; therefore, an
appropriate automated response becomes a possibility.

239

240

Predictability is also highly significant to automation. It contributes to the foundations
of solution development; it enables reusability. In a simple definition, reusability is achieved
when a solution is designed once and then used many times. Reusability helps reduce the
time needed to develop a solution, reduces the need for resources, and also simplifies solu-
tion deployment and maintenance.

Another significant characteristic essential for efficient automation is adaptability. In order
for an automated solution to be capable of detecting problems, capable of responding to
them without any user intervention, or even capable of preventing them from occurring in
the first place, it needs to be adaptable. It needs to identify the state of its environment and
adjust itself accordingly during execution.

High determinism, which is a characteristic of many data management processes, especially
in data warehousing, allows these processes to be automated. The ability to determine at de-
sign time which data management operations will be required, under what conditions they will
be performed at run time, and in what order, are the principal prerequisites of automation.

Nevertheless, "deterministic” does not mean "rigid"—although most circumstances can be
predicted at design time, unfortunately some cannot. What cannot be predicted cannot be
preset. Just consider the differences between the development and the production environ-
ments: any element of an automated solution that depends on the environment and that is
not adjusted appropriately might render the deployed solution useless or even harmful, or
could prevent its execution altogether.

To respond to this particular challenge, SSIS solutions can be parameterized; this allows the
essence of any automated operation to remain unchanged while its properties, which might
depend on the environment or other circumstances, can be modified accordingly. Typically,
the administrator in charge of maintenance will use the parameters to control the behavior of
the solution’s execution by setting the exposed properties.

Not only does parameterization enable deployment in the first place, but it also improves
the SSIS solution’s reusability by allowing the same solution to be deployed multiple times,
and to different environments.

A high degree of determinism might even allow some SSIS solution properties to be set
automatically—either because they are based on parameterized settings (for example, if
the root path pointing to the location of data files is parameterized and will eventually be
controlled by the administrator, then the paths to folders below the root folder can be de-
termined automatically), or because they are based on automatically discoverable properties
(for example, the number of CPUs, the size of available system memory, or the amount of free
disk space) and therefore do not even need to be set by the administrator.

Enhancing Control Flow

IMPORTANT PARAMETERS

Always parameterize properties that cannot be determined any other way, except for being
set by the administrator (such as file paths, server and database names, or entire connec-
tion strings).

Avoid parameterizing properties that can also be determined automatically (such as the

number of CPUs); furthermore, do not parameterize automatically determinable proper-
ties that, if set by the administrator, could cause the solution to fail (such as data source

queries) or cause it to underperform (such as batch sizes).

Lessons in this chapter:
m Lesson 1: SSIS Variables
m Lesson 2: Connection Managers, Tasks, and Precedence Constraint Expressions

m Lesson 3: Using a Master Package for Advanced Control Flow

Before You Begin

To complete this chapter, you must have:
m Experience working with SQL Server Management Studio (SSMS).

m Experience working with Microsoft Visual Studio, SQL Server Business Intelligence
Development Studio (BIDS), or SQL Server Data Tools (SSDT).

m A working knowledge of the Transact-SQL language.

Lesson 1: SSIS Variables

SSIS variables can be used to store values that are determined automatically at run time and
that are to be used or reused in various elements of the solution. Some variables (such as

the time the process started, the name of a dynamically created folder to be used for storing
temporary files, or the number of CPUs) are set once—for example, at the beginning of the ex-
ecution, or just before they are actually needed—and then can be used multiple times, where
some variables (such as the name of the file being processed by the Foreach Loop container
using the Foreach File Enumerator or values from the current row in a Foreach Loop container
using a Foreach ADO Enumerator) are set iteratively and used until the next iteration.

Lesson 1: SSIS Variables

241

IMPORTANT REUSABILITY

Maximize data reusability: avoid retrieving configuration data from an external store (such
as a database or a file) more than once, unless any changes to this data that could occur
during execution must be reflected in the SSIS package (such as the amount of available
system memory).

Parameters and variables can be used in SSIS packages interchangeably, but there are a
few differences that you should be aware of:

m Parameters are exposed to the caller, but variables are not. If a particular property
needs to be set dynamically but should not be set by the administrator, use a variable;
otherwise, use a parameter.

NOTE SSIS PROPERTY PATHS

As you will learn in Chapter 12, “Executing and Securing Packages,” the values of SSIS
object properties can be set explicitly upon SSIS package execution; however, one needs
to be intimately familiar with the internal structure of the package in order to do so.

Compared to property paths, SSIS parameters provide a much more transparent alter-
native: they allow the developer to decide which settings will actually be configurable,
and they allow the administrator to configure the package without the need for any
detailed knowledge of its internal organization.

m Within an SSIS package, parameters are read-only. They can only be set by the caller,
and after they are set, they cannot be changed.

() EXAM TIP

The intended purpose of SSIS parameters is to supply values that either should or must be
determined outside the SSIS process—mostly because they cannot be determined auto-
matically. The pivotal purpose of SSIS variables, on the other hand, is to improve reusability
and optimize data retrieval. SSIS variables are therefore not subject to the same sort of
restrictions as SSIS parameters.

242 Enhancing Control Flow

After this lesson, you will be able to:
m Determine variables.
m Understand and use user variables.
m Understand variable scope and data type.

m Implement parameterization of properties by using variables.

Estimated lesson time: 45 minutes

System and User Variables
There are two types of SSIS variables:

m A fixed set of system variables, representing specific properties of various SSIS objects
(packages, tasks, containers, components, and event handlers). System variables are
read-only; their values are set by SSIS.

m User-defined variables, defined by the SSIS developer and used to store various pieces
of information acquired or created during execution. By default, user-defined variables
can be written to, but it is also possible to limit their usage to read-only.

Apart from the limitations mentioned here, there is no difference in behavior between
system and user variables.

For a list of all available system variables, refer to the article entitled “System Variables” in
Books Online for SQL Server 2012 at http://msdn.microsoft.com/en-us/library/ms141788.

Generally, variables are used to store scalar values, but they can also be used for storing
row sets, such as row sets to be consumed by a Foreach Loop Container using the Foreach
ADO Enumerator.

NOTE LARGE ROW SETS IN VARIABLES

You should avoid storing large row sets in variables, because they are kept in memory and
could cause the system to run out of memory. Consider storing large data sets in staging
tables (permanent or temporary tables) in a database, or in SSIS raw data files, instead of in
variables.

Lesson 1: SSIS Variables 243

SSIS variables can be used by control flow tasks and containers and by data flow compo-
nents, and they are available to event handlers. Variables can be created using the Variables
pane or via the Add Variable dialog box available in certain task and component editors. They
can even be added programmatically.

Table 6-1 lists all available SSIS variable properties; some of these are discussed later in this
chapter.

TABLE 6-1 SSIS Variable Properties

Property Description

Name The name of the variable. This must be supplied when you are creating
user variables.

Scope The scope of the variable, designating which SSIS objects will be able to
access it. Variable scope is discussed in more detail later in this chapter.

Data type The data type of the variable. Variable data types are discussed in more
detail later in this chapter.

Value The value of the variable. All user variables must be initialized by using a
default value, except variables of Object or DBNull data types.

Namespace For the two types of variables, there are two variable namespaces: system
variables exist in the System namespace, and user variables exist in the
User namespace.

RaiseChangeEvent A Boolean value determining whether an event is raised when the value of
the variable changes; can be very useful for logging and troubleshooting.

Description An optional description of the variable, used mainly for documentation
purposes.

Expression An expression used to determine the value of the variable. This is useful

for variables whose values are determined automatically based on other
accessible system or user variables or parameters, by using expressions.
Variable expressions are discussed in more detail later in this chapter.

EvaluateAsExpression A Boolean value determining whether the value of the variable is provided
by an expression or not. This property cannot be set in the Variables pane;
however, it is available in the Properties pane, or when you are adding
variables programmatically.

Read only A Boolean value determining whether the variable can be modified or
whether it is read-only. This property cannot be set in the Variables
pane; however, it is available in the Add Variable dialog box and via the
Properties pane, or when you are adding variables programmatically.

IncludelnDebugDump A Boolean value determining whether the variable is included in debug
dump files or not. By default, the value of the property is True for both
system and user variables. However, the value is set to False automatically
for expression-based variables and variables whose data type is changed
to string. This property cannot be set in the Variables pane; however, it

is available in the Properties pane or when you are adding variables pro-
grammatically.

To display system variables in the Variables pane, you can set the filter accordingly in the
Variable Grid Options dialog box, shown in Figure 6-1. This dialog box is accessible from the
Grid Options toolbar command.

244 Enhancing Control Flow

e

Variable Grid Options |

— Filter

¥ Show gystem variables

[T Show variables of all SCOpES

— Columns
Scope

Data type

Value

Namespace

Baise event when varable value changes

Description

3 Bl B Y Y

Expression

QK I Cancel

FIGURE 6-1 The Variable Grid Options dialog box.

System variables are only displayed in the grid when the Show System Variables option is
checked.

Variable Data Types

The data types of SSIS variables are based on the Microsoft .Net Framework System.TypeCode
enumeration, shown in Table 6-2.

At design time, variables are configured, validated (the value defined in the designer or
the value set by the expression is validated against the defined data type, and a design-
time error is raised in case of a type mismatch), and enlisted (made accessible to various SSIS
object editors). Variables are not actually created until run time, when the SSIS package is
compiled; at run time, during package validation, the variables are validated again, and a
run-time error is raised in case of a type mismatch.

EXAM TIP

You should be familiar with the available SSIS variable data types, understand how and
when to use them in your variables, and also understand their limitations very well (espe-
cially with respect to numeric data types and their decimal precision).

Lesson 1: SSIS Variables

245

TABLE 6-2 SSIS Variable Data Types

Type name

Empty

Object

DBNull

Boolean

Char

SByte
Byte
Int16
Uint16

Int32

UInt32

Int64

Uint64

Single

Double

Decimal

DateTime

String

Description

A null reference. This data type is part of the System.TypeCode enumeration but is not sup-
ported by SSDT.

A general type representing any reference or value type not explicitly represented by an-
other TypeCode. You can use this type for storing values of unsupported data types in SSIS
variables. Before the value can be used, it needs to be explicitly converted to the appropriate

destination data type; debugging values stored in Object type variables requires additional
programming (such as using event handlers).

A database null (column) value. Use this data type to explicitly pass a NULL value to the
consuming task or component.

A simple type representing Boolean values of True or False.

An integral type representing unsigned 16-bit integers with values between 0 and 65,535.
The set of possible values for the Char type corresponds to the Unicode character set.

An integral type representing signed 8-bit integers with values between -128 and 127.

An integral type representing unsigned 8-bit integers with values between 0 and 255.

An integral type representing signed 16-bit integers with values between —32,768 and 32,767.
An integral type representing unsigned 16-bit integers with values between 0 and 65,535.

An integral type representing signed 32-bit integers with values between -2,147,483,648
and 2,147,483,647.

An integral type representing unsigned 32-bit integers with values between 0 and
4,294,967,295.

An integral type representing signed 64-bit integers with values between
-9,223,372,036,854,775,808 and 9,223,372,036,854,775,807.

An integral type representing unsigned 64-bit integers with values between 0 and
18,446,744,073,709,551,615.

A floating-point type representing values ranging from approximately 1.5 x 10~
to 3.4 x 10°¢ with a precision of seven digits.

A floating-point type representing values ranging from approximately 5.0 x 10-3?
to 1.7 x 10%% with a precision of 15 or 16 digits.

A simple type representing values ranging from 1.0 x 10-% to approximately 7.9 x 10
with 28 or 29 significant digits.

A type representing a date and time value.

A sealed class type representing Unicode character strings.

In addition to the set of data types used by SSIS variables, two additional groups of data
types exist in SSIS:

m Each data provider supports its own set of data types—these vary depending on the
particular data provider (such as OLE DB, ADO.NET, or ODBC).

m The data flow buffer uses a special set of data types—these are provided by the
SSIS engine and are used by the data flow components. These types are discussed
in Chapter 5, "Designing and Implementing Data Flow.”

246 Enhancing Control Flow

Each of these three groups of data types serves a particular purpose, supporting a princi-
pal SSIS objective of providing a common environment for data integration when data origi-
nates in diverse and heterogeneous data stores. The predominant majority of cases in which
an SSIS solution accesses data stored in various data stores should not suffer from any data
type compatibility issues. However, you should always be aware of the fact that not every
data type from one group of data types can be mapped to the most appropriate data type in
another group. Some data types, for instance, are not even supported by some data type sets
available in SSIS.

NOTE HETEROGENEOUS DATA TYPES

When integrating data from heterogeneous data sources, your best option is to identify a
common-denominator set of data types and convert the data appropriately, ideally upon
retrieval, or in the data flow task (for example, by using the Data Conversion component).

NOTE UNSUPPORTED DATA TYPES

When you find yourself in a situation when you are required to store a value of an unsup-
ported type in an SSIS variable, you can resort to using the Object type for this particular
variable. Object, being the base type from which all other types are derived, is implicitly
convertible to any other data type, which still enables you to use unsupported data types
and use variables to pass data between SSIS objects.

When variables are used to store row sets—that is, to store the result of a Transact-SQL
query that produces one or more row sets, such as the result of an Execute SQL Task—two
data types can be used:

m [f the query produces a regular row set, you can store the result in a variable of the
Object type.
The Object type variable can then be used in a row set consumer (such as a Foreach
Loop Container using the Foreach ADO Enumerator, or a Script Task or a Script Com-
ponent with the appropriate programmatic logic to access the row set data).

m [f the query produces an XML result, you can store it in a variable of the Object or the
String type.
The Object type variable containing an XML representation of an ADO.NET dataset
can be used in an ADO.NET dataset consumer (such as a Foreach Loop Container using
the Foreach ADO Enumerator, a Foreach Loop Container using the Foreach NodeList
Enumerator, or a Script Task or a Script Component with custom programmatic logic to
access data in the XML document).

The String variable containing an XML representation of an ADO.NET dataset can be
used in an XML data consumer (such as a Foreach Loop Container using the Foreach

NodelList Enumerator, a Script Task or a Data Flow Script Component with the appro-
priate programmatic logic to access data in the XML document, or a Data Flow XML

Source Component).

Lesson 1: SSIS Variables 247

248

IMPORTANT MULTIPLE RESULT SETS

If the query (such as one used by an Execute SQL Task) returns more than one row set, only
the first row set is returned and the rest are discarded. If multiple results are required, use
the FOR XML directive in your query to return the result as an XML document and assign it
to an SSIS variable of the Object or String data type.

NOTE REUSING ROW SETS IN SSIS

A lot of additional programmatic logic might be required in your SSIS package to con-
sume row sets stored in SSIS variables, especially when they are multiple row sets stored
in a single variable. A best practice is to use standard, built-in tasks and components (for
example, by splitting up the processing of multiple data sets into as many individual data
flows or by using nested Foreach Loop containers). Using standard tasks and components
simplifies the development (including debugging) and deployment as well as the mainte-
nance of your SSIS solutions.

If, on the other hand, none of the standard methods seem to be appropriate for the re-
quirements of a particular case, consider using the Script Task or the Script Component to
extend the SSIS functionalities, or even go as far as to develop your own custom control
tasks or custom data flow components.

Variable Scope

The scope of a variable is determined through the SSIS object hierarchy; scope restricts the
visibility and accessibility of a variable to a particular branch of the SSIS object hierarchy.

The package represents the root of the hierarchy; therefore, all variables defined at the
package level can be accessed by any task, container, or component defined inside this pack-
age. Package-scoped variables can be considered global.

Variables defined at container level are only accessible to that particular container and to
other objects it contains (containers can contain tasks and other containers). In the SSIS object
hierarchy, objects have access to their own local variables as well as the variables of their
respective ancestor objects.

Variables defined at task level are only accessible to that particular task, because tasks can-
not contain other SSIS objects. The only exception to this rule is the data flow task—variables
defined at the data flow task level can be used by the data flow components it contains; other
than that, task-scoped variables cannot be reused elsewhere.

Figure 6-2 illustrates how the position of an object in the hierarchy affects the scope of a
variable. The figure shows variables from different scopes; by default, only variables acces-
sible to the SSIS object selected in the designer pane are shown in the Variable pane. To show

Enhancing Control Flow

variables of all scopes, open the Variable Grid Options dialog box, shown previously in Figure
6-1, and select the Show Variables Of All Scopes option.

FistgeTabesdox Desor] < [
#,. Control Flow ([Data Flow |¢ Parameters | # EventHandlers |“: Pac

Initialize Package

o I Process Input Files ~
"

| = | Data Flow Task

.
l Failurs l

Archive Input File Exclude Failed File

Connection Managers |

A 02_Archive Al 03_Unresolved 5 Flat File Connaction Manager _,{proje
MName I Scope I Data type I Value I Expression I

[v] inputFileMame | FillStageTat String
i variableA P Int32 i}
i variableB Int32 i}

ﬂ: Error List B Output R EE

FIGURE 6-2 Variable scope.

Figure 6-2 shows three variables, each of them in its own scope:

m The inputFileName variable is package-scoped and therefore accessible to all SSIS
objects: the Initialize Package task, the Process Input Files Foreach Loop container, the
data flow task, the Archive Input File task, and the Exclude Failed File task.

m The variableA variable is container-scoped and therefore only accessible to the container
and the tasks it contains. It is not accessible to the Initialize Package task.

m The variableB variable is task-scoped and therefore only accessible to the data flow
task and the data flow components it contains. It is not accessible to the Archive Input
File task, the Exclude Failed File task, the Process Input Files container, or the Initialize
Package task.

Lesson 1: SSIS Variables 249

250

By default, every newly created variable is package-scoped. You can change the scope of
any variable by using the Move command from the Variables pane toolbar, which opens the
Select New Scope pane, as shown in Figure 6-3.

=TT

[El-- FilstageTables

Bl Executables
T Initislize Package
Process Input Files
Executables
_]] Archive Input File
i Data Flow Task

concel_|
4

FIGURE 6-3 The Select New Scope pane.

IMPORTANT CHANGING VARIABLE SCOPE

When you are changing variable scope, consider existing dependencies—if by changing
its scope you cause a variable to become inaccessible to a dependent task or component,
validation errors will be raised.

Variable scope provides another useful feature. Variable names must be unique, obviously,
to prevent ambiguity, but only within a particular scope. Two or more variables can share a
name, as long as they exist in separate scopes. In this case, ambiguity is resolved by proxim-
ity—the nearest accessible variable in the SSIS object hierarchy is used.

For instance, consider the example in Figure 6-2: you can add another variable named
variableA in the scope of the data flow task. After that, the variableA variable defined in the
scope of the Process Input Files container will no longer be accessible to the data flow task
and the data flow components it contains, being effectively overridden by the variableA vari-
able created in the scope that is nearest to the data flow task—its own scope.

Variables sharing a name, but not their scope, can even use different data types.

EXAM TIP

To understand variable behavior, you really need to understand variable scope—variable
accessibility inside the SSIS object hierarchy.

Scope allows you to restrict variable accessibility to a specific branch of the package hierar-
chy, and it also allows you to effectively “override” variables when necessary.

Enhancing Control Flow

Property Parameterization

Property parameterization, allowing specific SSIS object properties to be set dynamically, can
be implemented in several ways:
m SSIS object properties associated with parameters can be set dynamically from the call-
ing environment—even after deployment.
m Explicit assignment of property values from variables is available in some tasks and
components to facilitate the most common use cases and to simplify development.
For example, the Execute SQL task supports three methods of assigning a value to
the SQLStatement property: direct input, in which the SQL statement is a predefined
constant; file connection, in which the SQL statement is extracted from the contents of
a file; and Variable, in which the SQL statement is supplied via an SSIS variable.

m Assignment through expressions is available for most SSIS object properties, allow-
ing property values to be computed by using a combination of constants, variables,
parameters, or by using expression functions.

Property parameterization using SSIS parameters is discussed in Lesson 3 of Chapter 3,
“Creating SSIS Packages,” and parameterization using expressions is discussed in Lesson 2
of this chapter. In the practice in this lesson, you will learn how to parameterize SSIS object
properties using explicit assignment.

¥ Quick Check

1. Which SSIS objects can access container-scoped variables?
2. How many namespaces are available for SSIS variables?

3. How can you modify the value of a system variable?

Quick Check Answers

1. Container-scoped variables are only accessible to the container and the SSIS
objects it contains.

2. SSIS variables can exist in two namespaces: user variables in the User
namespace, and system variables in the System namespace.

3. System variables are read-only; their values are determined by SSIS.

Creating a User Variable and Parameterizing a Task

In this practice, you will create three variables, define their values, and then reconfigure three
Execute SQL tasks to use the variables.

In Chapter 5, you created an SSIS package that implements three Execute SQL tasks with
Transact-SQL statements. These statements were embedded inside their corresponding tasks,
and as a result they could not be reused by any other task. By using variables instead of con-
stants, you can assign the same Transact-SQL statement to more than one Execute SQL task.

Lesson 1: SSIS Variables

251

252

EXERCISE 1 Prepare the Environment

1.

Start SSMS. On the File menu, under Open, select File and then navigate to the
C:\TK463\Chapter06\Code folder. Open the TK463Chapter06.sql Transact-SQL
script.

After you have reviewed the script, execute it. The script creates the database and the
objects you will be using throughout this chapter.

EXERCISE 2 Create User Variables

1.

5.

Start SSDT. On the Start page, select Open Project, navigate to the C:\TK463
\Chapter06\Lesson1\Starter folder, and open the TK 463 Chapter 6.sIn solution.

Open the FillStageTables.dtsx package.

Open the Variables pane by selecting Variables from the SSIS menu, or by clicking the
Variables icon at the top of the SSIS Designer window.

In the Variables pane, create three variables, using the information provided in Table 6-3.

TABLE 6-3 Transact-SQL Statement Variables

Name Data type Value

truncateStgCustomer String TRUNCATE TABLE stg.Customer;
truncateStgCustomerInformation String TRUNCATE TABLE stg.Customerinformation;
truncateStgPerson String TRUNCATE TABLE stg.Person;

Save the solution but keep it open, because you will need it in the following exercise.

EXERCISE 3 Parameterize Control Flow Tasks by Using Variables

1.

Double-click the Truncate Table stgCustomer Execute SQL task, or right-click it and
then select Edit from the shortcut menu, to open the Execute SQL Task Editor.

Change the SQLSourceType property to Variable and change the SourceVariable prop-
erty to truncateStgCustomer. When done, confirm the change by clicking OK.

Repeat steps 1 and 2 for the Truncate Table stgCustomerinformation task, assign-
ing the truncateStgCustomerinformation variable to its SourceVariable property, and
for the Truncate Table stgPerson task, assigning the truncateStgPerson variable to its
SourceVariable property.

Save the solution, and then execute it in debug mode. Observe the execution. When
the execution completes successfully, close the solution.

Enhancing Control Flow

Lesson Summary

You can use variables in SSIS packages to determine certain values once, and then re-
use them multiple times.

Variable values can be assigned literally or by using expressions. SSIS implements a
variety of data types to be used in SSIS variables.

SSIS variables can be assigned dynamically as the package is executed—either once
per execution or iteratively.

Variable accessibility is determined by scope.

SSIS variables can be used to parameterize SSIS object properties.

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1.

In your SSIS package you need to retrieve a scalar value from a table in the destina-
tion database, to be used by multiple tasks. What is the most appropriate method to
achieve this?

A. Embed a subquery in every existing query used by the package, so that the database
engine can prepare the most appropriate execution plan to retrieve it at run time.

B. Create a variable and use an expression to retrieve the value from the database
once, and then use it throughout the execution.

C. Create a variable and use the Execute SQL task to retrieve the value once, and then
use it throughout the execution.

D. Create a variable and use the Expression task to retrieve the value from the data-
base as many times as needed.

In your SSIS package, you created a package-scoped variable to hold a value that you

want to reuse throughout the package. Later you discover that this value must be set

differently in one container, but the original variable should not be affected. What can

you do?

A. Create a new package-scoped variable with a different name and reconfigure the
tasks accordingly, to either use the new variable or the original one.

B. Create a new container-scoped variable with a different name and reconfigure
only the tasks that it contains to use the new variable.

C. Create a new container-scoped variable with the same name, and leave the tasks
unchanged.

D. Use a package-scoped parameter, because this problem cannot be solved by using
variables.

Lesson 1: SSIS Variables

253

254

3. Inyour SSIS process, a specific property will be determined by the administrator in the
production environment. The value supplied by the administrator will be used in mul-
tiple properties and will have to be overridden automatically if certain conditions are
met at run time. What is the most appropriate method to achieve this in SSIS?

A. Create a parameter and use expressions to assign its value to the corresponding
properties, but use an expression at the beginning of the execution to change the
parameter value if needed.

B. Create a parameter, use an expression at the beginning of the execution to either
assign its value to a variable or override the value if needed, and use expressions to
assign the value of the variable to the properties.

C. Create a read/write variable, use expressions to assign its value to the appropriate
properties, and assign the correct value to the variable via property paths at run
time.

D. Create a parameter and use expressions to either assign its value to the property
or override it if needed.

Lesson 2: Connection Managers, Tasks, and
Precedence Constraint Expressions

As mentioned earlier in this chapter, there is a myriad of settings in an SSIS solution that can
be parameterized or configured dynamically. Obviously, most of them will never need to be
set dynamically, and never exposed to the caller environment via parameters, but there are
settings in an SSIS solution that typically do need to be determined dynamically; some of
them to allow appropriate adjustments of the solution to the target environment (such as
settings that depend on available resources—batch sizes, maximum cache sizes, and similar),
and some to enable deployment in the first place (such as settings reflecting the environment
itself—connection strings, file paths, and similar).

Typically, in an SSIS solution, the following SSIS objects should be parameterized (by using
one of the methods described in Lesson 1 of this chapter):

m Connection managers During development, the SSIS solution connects to data
stores in the development or testing environment, but a deployed solution will connect
to production data stores. Certain connection managers also have to be configured at
run time iteratively—such as file connection managers used by a Foreach Loop Con-
tainer using the Foreach File Enumerator, as demonstrated in Lesson 2 of Chapter 3.

m Tasks and components Depending on dynamically determined settings, if an op-
eration depends on values determined by using additional programmatic logic (either
at the beginning of the execution or per iteration of a Loop Container), you can use
an Expression task or a Script task to compute the values and store them in an SSIS
variable, which is then passed to the appropriate task or component. Examples include,
an Execute SQL task or a source component using dynamically created queries with a
varying set of parameters.

Enhancing Control Flow

m Data flow tasks You can parameterize data flow tasks to allow them to work bet-
ter with the current state of the environment. Large data movements are typically
resource intensive; therefore, in order to prevent them from running out of resources,
you could adjust their behavior in accordance with the actual availability of resources
at run time by using appropriate programmatic logic (using an Expression task or a
Script task)—for example, by setting the batch size and the maximum cache size for a
data flow task based on the amount of available system memory and I/O resources.

After this lesson, you will be able to:

Implement parameterization of properties by using variables.
Refer to SSIS system variables.

Use expressions.

Use property expressions.

Implement dynamic package behavior.

Estimated lesson time: 60 minutes

Expressions

An expression is a combination of constants, variables, parameters, column references,
expression functions, and/or expression operators, allowing you to prescribe at design time

how a specific value will be determined at run time. Expressions are used to determine values

dynamically in an automated process, rather than having these values set manually and in
advance using constants.

Expressions are written in a special expression language native to SSIS. This language
uses syntax similar to that of the C++ and C# programming languages—it implements a
predefined set of operators, shown in Table 6-4, and a predefined set of functions, shown in
Tables 6-5 through 6-8.

TABLE 6-4 SSIS Expression Operators

Operator Description

(type_spec) (Data type Cast) Converts an expression from one data type to a different data type.
A Data Flow Buffer data type is provided as the type_spec argument.
Depending on the selected data type, additional arguments might be
required.
Data Flow Buffer data types are discussed in Chapter 5.

() (Parentheses) Identifies the evaluation order of expressions.

+ (Add) Adds two numeric expressions.

+ (Concatenate) Concatenates two expressions.

Lesson 2: Connection Managers, Tasks, and Precedence Constraint Expressions

255

256

Operator

- (Subtract)
- (Negate)

* (Multiply)
/ (Divide)

% (Modulo)

|| (Logical OR)

&& (Logical AND)

! (Logical Not)

| (Bitwise Inclusive OR)
A (Bitwise Exclusive OR)
& (Bitwise AND)

~ (Bitwise Not)

== (Equal)

= (Unequal)

> (Greater Than)

< (Less Than)

>= (Greater Than or Equal To)

<= (Less Than or Equal To)

Description

Subtracts the second numeric expression from the first one.
Negates a numeric expression.

Multiplies two numeric expressions.

Divides the first numeric expression by the second one.

Provides the integer remainder after dividing the first numeric expression
by the second one.

Performs a logical OR operation.

Performs a logical AND operation.

Negates a Boolean operand.

Performs a bitwise OR operation of two integer values.

Performs a bitwise exclusive OR operation of two integer values.
Performs a bitwise AND operation of two integer values.

Performs a bitwise negation of an integer.

Performs a comparison to determine if two expressions are equal.
Performs a comparison to determine if two expressions are not equal.

Performs a comparison to determine if the first expression is greater than
the second one.

Performs a comparison to determine if the first expression is less than the
second one.

Performs a comparison to determine if the first expression is greater than
or equal to the second one.

Performs a comparison to determine if the first expression is less than or
equal to the second one.

The elementary computations can be performed by using operators: addition, subtraction,
multiplication, and division for numerical data, and concatenation for strings. Value compari-
son is also supported by using operators; comparison expressions return a Boolean value.
Some tasks and components (such as the Conditional Split component) use Boolean functions
to determine their operation (for example, redirecting the rows in a data flow to different
outputs based on the comparison test).

Boolean expressions can also be used in precedence constraints to extend the built-in
functionality used in determining the control flow based solely on the success, failure, or
completion of a preceding task. Precedence constraint expressions are discussed later in this

lesson.

Enhancing Control Flow

TABLE 6-5 SSIS Expression Mathematical Functions

Function

ABS

EXP
CEILING
FLOOR
LN

LOG
POWER
ROUND
SIGN
SQUARE

SQRT

Description

Returns the absolute, positive value of a numeric expression.

Returns the exponent to base e of the specified expression.

Returns the smallest integer that is greater than or equal to a numeric expression.
Returns the largest integer that is less than or equal to a numeric expression.
Returns the natural logarithm of a numeric expression.

Returns the base-10 logarithm of a numeric expression.

Returns the result of raising a numeric expression to a power.

Returns a numeric expression that is rounded to the specified length or precision.
Returns the positive (+), negative (-), or zero (0) sign of a numeric expression.
Returns the square of a numeric expression.

Returns the square root of a numeric expression.

Mathematical functions perform calculations against numerical values and return numeri-
cal results. Operators provide the essential computational methods, whereas mathematical
functions provide computation that would be cumbersome or even impossible to implement
by using operators alone.

TABLE 6-6 SSIS Expression String Functions

Function

CODEPOINT

FINDSTRING

HEX

LEN

LEFT

LOWER

LTRIM

REPLACE

REPLICATE

REVERSE

Description

Returns the Unicode code value of the leftmost character of a character expression.

Returns the 1-based index of the specified occurrence of a character string within an
expression.

Returns a string representing the hexadecimal value of an integer.
Returns the number of characters in a character expression.

Returns the specified number of characters from the leftmost portion of the given char-
acter expression.

Returns a character expression after converting uppercase characters to lowercase char-
acters.

Returns a character expression after removing leading spaces.

Returns a character expression after replacing a string within the expression with either a
different string or an empty string.

Returns a character expression, replicated a specified number of times.

Returns a character expression in reverse order.

Lesson 2: Connection Managers, Tasks, and Precedence Constraint Expressions

257

Function

RIGHT

RTRIM

SUBSTRING

TRIM

UPPER

Description

Returns the specified number of characters from the rightmost portion of the given char-
acter expression.

Returns a character expression after removing trailing spaces.
Returns a part of a character expression.
Returns a character expression after removing leading and trailing spaces.

Returns a character expression after converting lowercase characters to uppercase char-
acters.

String functions perform operations against string and hexadecimal values and return
string or numerical results. The typical string functions are available in the expression lan-
guage; however, for more sophisticated string manipulation, you might have to resort to
script tasks, script components, or even custom tasks or custom components, depending on
the degree of complexity required in a particular case.

TABLE 6-7 SSIS Expression Date and Time Functions

Function

DATEADD

DATEDIFF

DATEPART

DAY

GETDATE

GETUTCDATE

MONTH

YEAR

Description

Returns a new DT_DBTIMESTAMP value by adding a date or time interval to a specified
date.

Returns the number of date and time boundaries crossed between two specified dates.
Returns an integer representing a part of a date.

Returns an integer that represents the day of the specified date.

Returns the current date of the system.

Returns the current date of the system in UTC time (Universal Time Coordinate or
Greenwich Mean Time).

Returns an integer that represents the month of the specified date.

Returns an integer that represents the year of the specified date.

Date and time functions perform operations against date and time values and return date
and time, string, or numerical results. Date and time dimensions play an important part in
data warehousing, and these functions can be used to simplify their maintenance.

TABLE 6-8 SSIS Expression Null Functions

Function

ISNULL

NULL

‘ Description

‘ Returns a Boolean result based on whether an expression is null.

‘ Returns a null value of a requested data type.

Enhancing Control Flow

Use these functions to test for null values or to pass them to a consumer (a task or a
component). Although by default nulls are not associated with any type, the consumer might
expect values to be passed in specific types, so the NULL function accepts one argument
specifying the data type of the result.

Property Expressions

Property expressions are available to most SSIS objects and can either be set by using the
object’s editor or in the object's property pane. Although for most SSIS objects the use of
property expressions is completely optional, there are components (such as the Derived
Column Component) for which expressions are mandatory; otherwise, the component cannot
even be configured.

Typically, expressions are used to determine specific SSIS properties that depend on data
or conditions not known until run time. If a dependency between a particular property and
one or more other properties, values, or settings can be described deterministically, then
the dependent setting does not have to be guessed at design time but can be computed at
run time.

If the result of an expression can be used to determine settings for more than one SSIS
object, the Expression task can be used to compute the result once and store it in a variable,
which can then be used multiple times avoiding the necessity of performing the same calcula-
tion more than once.

At design time, if expressions do not evaluate to expected values (because one or more
values that the result of the expression depends on are not known, or have not been popu-
lated), the design time validation will return an error. To prevent this, you can either provide
appropriate default values or delay validation until run time, when the expected values will be
available.

NOTE DELAYED VALIDATION

Design time validation can be disabled for every individual SSIS object by setting the
DelayValidation property to True.

Precedence Constraint Expressions

Precedence constraints are discussed in detail in Lesson 3 of Chapter 4, "Designing and
Implementing Control Flow.” In that chapter, the focus was on the elementary functional-
ities of precedence constraints—defining the conditions of control flow execution, based
solely on the execution result of the preceding task or container.

Expressions provide a way of extending precedence constraints with additional conditions,
thus reducing the possible rigidity of using just the three elementary options. Through this
extension, the conditions of SSIS package execution can be made more strict (for example, by
using the "Constraint and Expression” rule), or less strict (for example, by using the “Constraint

Lesson 2: Connection Managers, Tasks, and Precedence Constraint Expressions

259

or Expression” rule). Alternatively, the expression can even be used instead of the constraint,
to completely eliminate the success (or failure) of the preceding task or container from the
condition.

With precedence constraint expressions, the range of possibilities is extended significantly,
as shown in Table 6-9.

TABLE 6-9 Precedence Constraint Expression Combinations

Constraint Expression Constrained
Evaluation operation evaluates to evaluates to executable runs
Constraint True N/A True
Constraint False N/A False
Expression N/A True True
Expression N/A False False
Constraint and Expression True True True
Constraint and Expression True False False
Constraint and Expression False True False
Constraint and Expression False False False
Constraint or Expression True True True
Constraint or Expression True False True
Constraint or Expression False True True
Constraint or Expression False False False

(Quick Check
1. Which .NET Framework programming language is used for SSIS expressions?

2. What are SSIS expressions typically used for?

Quick Check Answers

1. SSIS expressions use a special, proprietary expression language that is only
available for SSIS development and is therefore not part of the .NET Framework.

2. SSIS expressions allow you to determine values needed in SSIS execution dynam-
ically at run time, rather than having to assign constants to them at design time.

260 Enhancing Control Flow

Using Expressions to Parameterize SSIS Objects

In this practice, you will create an SSIS variable and build an expression to determine its value
automatically at run time, rather than using a constant provided at design time.

EXERCISE 1 Use an Expression to Assign a Variable

1.

Start SSDT. On the Start page, select Open Project, navigate to the C:\TK463
\Chapter06\Lesson2\Starter folder, and open the TK 463 Chapter 6.sIn solution.

Open the FillStageTables.dtsx package.

Using the Variables pane, create a new variable based on the information provided in
Table 6-10.

TABLE 6-10 The dayOfWeek Variable

Name ‘ Data type

dayOfWeek ‘ Byte

Leave its value unchanged for now. (By default, the value of numeric variables is zero.)

On the right, next to the Expression column of the newly added variable, click the
ellipsis (...) to open the Expression Builder dialog box, shown in Figure 6-4.

=T
Specify the expression:
|5 Variables and Parameters 3 Mathematical Functions
.3 String Functions
3 Date/Time Functions
3 NULL Functions
[Type Casts
4 Operators
Description:
BExpression:
(DT_UIT) DATEPART("Weekday", @[System::Start Time] } ;I
Evaluated value:
j £
=l
o | _coed |

FIGURE 6-4 The Expression Builder.

Lesson 2: Connection Managers, Tasks, and Precedence Constraint Expressions

261

262

7.

8.

Use the Expression Builder to build the expression shown in Listing 6-1.

In the tree view on the left side of the dialog box, you can access existing system and
user variables as well as parameters, to be used in expressions. In the tree view on the
right are six groups of SSIS expression functions. Use the Expression text box to edit
the expression; you do not have to actually type in an entire expression—simply drag
any variable, parameter, or function from the tree views at the top of the dialog box
into the Expression text box and edit any missing elements.

LISTING 6-1 Expression

(DT_UI1)DATEPART (“Weekday”, @[System::StartTime])

The expression shown in Listing 6-1, uses the StartTime system variable, holding the
time when the execution of the package started, to calculate an Int32 (DT_I4) value of
the day of the week, which is then cast to a Byte (DT_UI1) value, as required by the user
variable you created earlier.

Click Evaluate Expression to test your expression; it should return the value for the cur-
rent day of the week (between 1 for Monday and 7 for Sunday) in the Evaluated Value
box at the bottom of the Expression Builder dialog box.

When you have finished preparing the expression, click OK to confirm the changes.

Save the solution, but keep it open, because you will need it in the following exercise.

EXERCISE 2 Use Expressions to Control Data Flow Behavior

1.

2.

Make sure that the FillStageTables.dtsx package is open in the SSIS Designer.
Right-click the Insert stgCustomer data flow task and select Properties from the short-
cut menu.

In the Property grid, find the Expressions property collection and click the ellipsis (...)"
next to the value box to open the Property Expression Editor, shown in Figure 6-5.

iix]
Property expressions:
Property | Expression |
Default BufferMaxRows @[User:day(fWeek] == 6 @]...
Default BufferSize @[User:dayOfWeek] =61 @[.. | ..]

ok | concel |

FIGURE 6-5 The Property Expression Editor.

Enhancing Control Flow

In the Property column of the Property Expression Editor, select the DefaultBuffer-
MaxRow property.

Click the ellipsis (...) next to the property’'s Expression column to open the Expression
Builder, and use it to build the expression shown in Listing 6-2.

LISTING 6-2 The DefaultBufferMaxRow Property Expression

@[User::dayOfWeek] == 6 || @[User::dayOfWeek] == 7 ? 20000 : 10000

This expression uses a conditional operator to determine the value of the property
based on the dayOfWeek variable: if the SSIS package is executed on a Saturday or on
a Sunday, the default maximum number of rows is set to 20,000; otherwise it is set to
10,000, allowing the process to use more resources on a nonworking day.

Click Evaluate Expression to see the computed result based on the current day. When
done, click OK to confirm the creation of the expression.

Repeat steps 2 through 4 for the DefaultBufferSize property, this time using the
expression shown in Listing 6-3.

LISTING 6-3 The DefaultBufferSize Property Expression

@[User::dayOfWeek] == 6 || @[User::dayOfWeek] == 7 ? 20971520 : 10485760

Much like before, the expression calculates the default buffer size of the data flow task
based on the value of the dayOfWeek variable, allowing the SSIS package to reserve

twice as much memory on nonworking days as it is allowed to reserve on working days.

Click Evaluate Expression to see the computed result based on the current day. When
done, click OK to confirm the creation of the expression.

When you are finished configuring properties, click OK in the Property Expression
Editor to confirm the configuration.

Save the solution, and then execute it in debug mode to test it. When you are done,
close SSDT.

Lesson Summary

The SSIS runtime provides information about the execution environment and other
system information via SSIS system variables.

Expressions can be used to compute the values of SSIS object properties at run time.

Variables and expressions can also be used to extend the elementary functionality of
precedence constraints based on information available at run time that usually is not
available at design time.

Lesson 2: Connection Managers, Tasks, and Precedence Constraint Expressions

263

264

Lesson Review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1.

In your SSIS package, there are several data flow tasks, each importing data into the
destination database. You need to log the number of rows that have been inserted or
updated in each data flow. What options provided by SSIS can you use to accomplish
this? (Choose all that apply.)

A. You can use the Row Count task to count the rows passed through a data flow.

B. You can use the Row Count component to count the rows passed through a
data flow.

C. You can store the values in variables before saving them to the log.

D. You can use an expression to calculate the total number of processed rows.

In your SSIS package, you need to set the properties of several tasks based on the in-
formation available about the run time environment. Each of the properties you need
to compute can be calculated by using a mathematical expression. What would be the
most appropriate method?

A. Use the Expression Builder to build and test the expression, and then copy it to all
of the corresponding task definitions.

B. Place an Expression Task into the control flow, preceding each task whose proper-
ties need to be determined dynamically.

C. Use as many Expression tasks as necessary to compute as many variables as there
are different calculations, and then use the variables to assign the values to the
corresponding tasks.

D. Use asingle Expression task and store all required computed values in a row set
(Object) variable to be used in property expressions to configure the correspond-
ing tasks.

In the control flow of your SSIS package, you need to add a data maintenance task that
will rebuild the indexes of your dimension tables after they have been populated suc-
cessfully. You have implemented each dimension table load in an individual data flow.
The Execute SQL task containing the index rebuild script must be executed after the
preceding data flow has completed successfully, but only on Saturdays. The name of
the current day is stored in a variable. Is it possible to achieve this in SSIS control flow?
If so, how?

A. No, this is not possible in the control flow because the conditional split transforma-
tion is only available in a data flow.

B. Yes, itis possible to achieve this in the control flow, but only by using a Script task.

Enhancing Control Flow

C. Yes, this can be achieved by using a success precedence constraint leading from

the data flow task to the Execute SQL task, with a precedence constraint expression
checking whether the value of the variable is Saturday.

D. Yes, this can be achieved by using a regular success precedence constraint leading

from the data flow task to the Execute SQL task.

Lesson 3: Using a Master Package for Advanced
Control Flow

The master package is not a special type of SSIS package; it is a concept, an approach to SSIS
development, deployment, maintenance, and operation. The implementation of this concept,
which takes advantage of the standard built-in SSIS functionalities, is based on the Execute
Package task. Individual operations or processes can be distributed among multiple SSIS
packages, but a single package—the master package—is used to provide a central control
flow and the shared and centralized configuration of all individual packages.

Typically, a complete data warehousing solution contains a variety of operations, some of
them quite diverse:

Data extraction When you are working with large amounts of data, using a

staging area reduces the impact of data movement operations on the source system,
with data being transferred to the staging data store in simple data moves without any
transformations.

Stage preparation As the size of data grows, so do the resource needs of the stag-
ing data store. To reduce the impact of stage maintenance on other processes, or to
even eliminate it altogether, you can arrange stage maintenance in a dedicated proc-
ess, rather than as part of any other process.

Data transformations The stage data store plays the role of the source data store
in transformation processes, reducing the dependency of these transformations on
data extraction processes. The stage data store can also serve as temporary storage
for complex transformations that cannot be performed entirely in memory, and it can
also serve as the temporary destination data store, before the data is moved to its final
destination.

Data warehouse maintenance Index rebuilds and reorganizations, statistics up-
dates, and purge operations represent typical data warehouse maintenance opera-
tions. Obviously, they do not have to be performed as part of any other process.

Data loads |If the stage data store can provide temporary storage for transformed
data, then the final transfer of data can be performed by using simple data move-
ments, reducing the impact on the destination data store, and reducing if not eliminat-
ing the dependency of load processes on transformation processes.

Lesson 3: Using a Master Package for Advanced Control Flow

265

266

Not all data load operations are the same—fact loads differ from dimensional loads,
and data is managed differently depending on the treatment of historical data (that is,
Slowly Changing Dimensions); fact loads do not have to be developed, deployed, and
maintained together with dimension loads, and different dimension loads do not have
to be developed, deployed, and maintained together, even though they usually should
be executed as a whole.

m Multidimensional processing Before data can be moved into the multidimen-
sional data store (such as a SQL Server Analysis Services [SSAS] database), it needs to
be stable, meaning that any preceding processes (extract-transform-load) should be
completed successfully and in their entirety before the move is executed. It is therefore
quite natural that multidimensional processing does not have to be performed as part
of any other process.

The master package concept supports the division of operations across several smaller SSIS
packages, rather than keeping all of them inside a single large SSIS package. Using the master
package concept, each individual package can be developed, tested, deployed, and main-
tained separately, which reduces total development time.

Operations that are different in their nature, purpose, and/or objective can be implemented
in separate packages, and different developers on the team can be assigned to these sepa-
rate work items, allowing them to focus on a few elements of the solution or even on just a
single element, rather than on all of the elements, which is unavoidable when the solution is
designed as a whole. By using the master package concept, individual developers—experts in
particular domains—can complete their tasks in parallel, which not only reduces total devel-
opment time, but also allows their manager to assign the most appropriate developer to each
separate development task.

As individual parts of the solution are being developed independently, one team member
can be assigned to design the complete control flow and to plan its deployment and main-
tenance. Using the master package concept allows the entire set of individual SSIS packages
to be executed as if they were all parts of a single SSIS package, without interfering with their
individual life cycles.

If operations (or processes) implemented in individual packages constitute what could, in
business terms, be qualified as “atomic operations,” another benefit of using master pack-
ages becomes apparent; namely, improved reusability. If the same operations can be used for
different purposes, workloads, or objectives, or could be deployed to different environments,
then these atomic packages could be shared among different master packages, rather than,
for instance, copied to different SSIS projects or solutions.

Individual parts of the solution are deployed and maintained separately and independently
from one another. Therefore, SQL Server security functionalities could be used to grant access
to each individual package only to the persons in charge of its maintenance, improving the
safety of the entire solution without having to prevent individual developers from accessing
their own packages. You will learn more about SSIS project deployment in Chapter 11, “Install-
ing SSIS and Deploying Packages.”

Enhancing Control Flow

After this lesson, you will be able to:
m Understand workloads.
m Understand the purposes and objectives of data management operations.
m Decide between one package or multiple packages.

m Use the Execute Package task.

Estimated lesson time: 90 minutes

Separating Workloads, Purposes, and Objectives

The individual elements of a typical data warehousing solution can be quite diverse—they

have different purposes and different objectives, and they operate on different workloads. By
separating them, and placing each in its own SSIS package, these elements can be developed,

tested, deployed, and maintained separately, any corrections to them can also be applied
independently, and they can be executed independently.

Extraction processes Simple data movements from the operational data store into
the staging data store are less resource intensive and can be performed more quickly
than complex data movements, which include data transformations, thus reducing
the impact on the actual data store to a portion of time that is typically significantly
shorter than the duration of the entire maintenance window.

Transformation processes When the data is available in the staging data store, any
transformation operations, regardless of their complexity, have zero impact on the
initial data store, or the operational system. Transformation processes can be executed
independently of load processes. Based on their complexity, it could be beneficial to
further separate simple transformations from complex ones, and maybe even isolate
exceptionally complex transformations—for example, for a more optimal division of
labor; to reduce mutual dependencies in testing, deployment, and maintenance; or to
provide more possibilities for parallelism in execution.

Stage maintenance processes When transformations have been completed suc-
cessfully, parts of the stage data store used in data loads can be purged, and parts
used in consequent loads can now be optimized for data retrieval (index creation,
rebuilds, and reorganization).

Load processes When the data has been transformed and prepared appropriately,
and when the staging data store has been optimized for retrieval, data can finally be
loaded into the destination data store by using simple data movements, thus reducing
the impact on the destination data store to a portion of time significantly shorter than
the duration of the entire maintenance window.

Multidimensional processing Only after the entire extract-transform-load (ETL)
process has been completed successfully, and only if the data in the data warehouse
has actually changed, is it appropriate to prepare the data for consumption.

Lesson 3: Using a Master Package for Advanced Control Flow

267

268

Harmonizing Workflow and Configuration

While individual elements of the data warehousing solution are still being planned and devel-
oped, the skeleton of the master package can already be designed: by considering the rela-
tionships between the individual elements of a typical data warehouse solution as discussed
just previously, the complete workflow can be designed in advance:

1.

The process should start with initial configurations—parameterization that does not
depend on values determined iteratively, during execution.

If any maintenance operations need to be performed in the staging data store, before
the data extraction can begin, they should be performed next.

During data extraction, the impact on the source data store should be considered, with
the focus on keeping the duration of the extraction short and keeping resource use as
high as possible—taking advantage of parallelism and keeping the I/O system busy.

If any additional maintenance operations need to be performed in the staging data
store to accommodate transformation processes, they should be performed right after
the successful completion of the data extraction phase.

Data transformations are performed next. In this phase, you should also try to maximize
resource use—taking advantage of parallelism by executing CPU-intensive operations
with low to moderate I/O in parallel with 1/O-intensive operations with low to moderate
CPU use. If certain transformations need to be performed in sequence, the sequence
must be preserved.

When data is loaded into the staging data store, and when transformations are
performed that also include data movement, indexes on the staging tables are not
needed. However, they could be useful in retrieval operations, especially for merges
and updates. If indexes could be useful in the following phases. they should be created
in this phase.

After the data has been prepared for loading, the load processes can begin. Again,
most data movements should be simple, so by maximizing resource use you can re-
duce the duration of the process, minimizing the impact on the destination system. In
SQL Server 2012 Enterprise edition with partitioned staging and destination tables, the
final data movement could be simply a metadata operation (using partition switching,
when both staging as well as destination tables exist in the same database).

After the data load has been completed successfully, the destination tables should
be optimized for retrieval—index creation, rebuilds, and/or reorganization, as well as
statistics updates, should be performed.

After destination data store maintenance has been completed, multidimensional
processing should be performed—assuming that in previous operations data modi-
fications have actually taken place.

Enhancing Control Flow

The order of operations and the conditions of execution constitute the skeleton of the
master package. However, for the master package concept to live up to its potential, another
requirement must be met.

Individual SSIS packages typically contain enough configuration logic for successful de-
ployment and maintenance, as well as execution. Though it is true that the packages will be
deployed and maintained individually, their execution will actually be governed as a whole,
centrally—through the master package. Therefore, in SSIS, the configuration of child pack-
ages can be controlled from the master package (through child package parameters).

The Execute Package Task

This task is used to execute other SSIS packages (referred to as child packages) from the
current package (referred to as the parent package). The task can be used to invoke a child
package belonging to the same project, a package located in the file system, or a package
deployed to a SQL Server instance.

SQL Server 2012 introduces a new deployment model for SSIS solutions: the Project De-
ployment model, in addition to the existing Package Deployment model. You will learn more
about SSIS deployment in Chapter 11. For now, you should know that the master package
concept is compatible with either of the deployment models; however, the new Project De-
ployment model provides an improved development, deployment, and maintenance experi-
ence, especially for implementing the master package concept, when compared to the older
Package Deployment model.

The Execute Package task provides two methods for the parameterization of child packages:

m Package configurations For every property that should be exposed to the caller
(the parent package), a parent package variable configuration must be prepared in the
child package. This configuration can reference a variable or an SSIS object property in
the child package. The name of the parent package variable must match the name of
the corresponding variable in the parent package.

m Parameters Variables, project parameters, or package parameters of the parent
package can be mapped to the parameters of the child package belonging to the
same project as the master package. This method is only available in the Project De-
ployment model.

The Execute SQL Server Agent Job Task

This task is used to execute SQL Server Agent jobs—that is, operations or processes
deployed to the SQL Server Agent Service (Transact-SQL scripts, ActiveX scripts, operat-
ing system scripts, Windows PowerShell scripts, replication tasks, SSAS commands, SSAS
queries, and SSIS packages).

In essence, this task could also be used in a master package; however, it is significantly
limited in functionality compared to the Execute Package task. This is mostly due to the
nature of the SQL Server Agent Service—the task can be used to start jobs, but it does not

Lesson 3: Using a Master Package for Advanced Control Flow 269

270

provide a way to monitor their execution (that is, the Execute SQL Server Agent Job task does
not provide a way to detect when a job has completed, let alone determine whether it was
completed successfully or not).

Based on these shortcomings, the Execute SQL Server Agent Job task is not really suited
for use in data warehousing master packages, where the order of operations as well as the
conditions of execution are both vital to the workflow.

The Execute Process Task

This task is used to execute external processes (solutions that exist outside the SQL Server
environment) as part of the SSIS process. If your SSIS solution depends on external proces